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1 GIPSA-Lab, Université Grenoble Alpes, CNRS, Grenoble INP, France
2 Laboratoire d’Informatique de Grenoble (LIG), Université Grenoble
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Abstract. This article unveils a new relation between the Nishimori temper-
ature parametrizing a distribution P and the Bethe free energy on random
Erdős–Rényi graphs with edge weights distributed according to P . Estimating
the Nishimori temperature being a task of major importance in Bayesian infer-
ence problems, as a practical corollary of this new relation, a numerical method is
proposed to accurately estimate the Nishimori temperature from the eigenvalues
of the Bethe Hessian matrix of the weighted graph. The algorithm, in turn, is
used to propose a new spectral method for node classification in weighted (possi-
bly sparse) graphs. The superiority of the method over competing state-of-the-art
approaches is demonstrated both through theoretical arguments and real-world
data experiments.
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1. Introduction

1.1. From statistical physics. . .

The physics of disordered systems [1] and Bayesian inference for graph learning [2]
have long been shown to be tied by a deep connection that has given rise to a host
of efficient physics-inspired algorithms [3–5]. A particularly telling example where this
relation stands out is the so-called teacher –student scenario, in which a set of observed
random variables are the outcome of a generative model (the teacher) with some hidden
parameters to be learned by the student [6].

As an instrumental example, we consider in this article the problem of statistical
inference on a graph in which the random variable observed by the student is a weighted,
undirected graph. Specifically, given a realization of an Erdős–Rényi graph G(V, E)
with vertex set V and edge set E ,3 a random weighted adjacency matrix J ∈ R

n×n, with
Jij = Jji �= 0 only if (ij) is an edge of G, is observed by the student whose task is to infer
some latent variable of the generative model of J . The non-null entries of the matrix J
are independently generated by the teacher according to the law

P (x) = p0(|x|)eβNx, (1)

for an arbitrary non-negative function p0(·) and some βN > 0, which we from now on
refer to as the Nishimori temperature4 [7]. The Nishimori temperature naturally appears
in statistical physics in the random bond Ising model (RBIM), in which the vector
s ∈ {−1, 1}n is a random variable distributed according to the Boltzmann distribution

μ(s) =
e−βHJ(s)

ZJ ,β
, (2)

for some positive β, with ZJ ,β a normalization constant and HJ(s) = −sTJs.
At β = βN, i.e. when the temperature of the system coincides with the Nishimori

temperature5, the exact expression of E [〈HJ(s)〉β] can be computed with elementary
mathematical tools, where 〈·〉β denotes the averaging over the Boltzmann distribution
(2) while E[·] is the averaging over the realizations of J distributed as (1). It has also been
shown [6, 8] that the RBIM at the Nishimori temperature is either in the ferromagnetic
configuration (in which 〈si〉β > 0 for all i) or in the paramagnetic configuration (for
which 〈si〉β = 0 for all i). In particular, the system is never in the spin-glass phase
under which local order of s appears despite there being no global magnetization. These
relevant properties drew research attention to this particular temperature [9–11] since
its first appearance in [7].

1.2. . . . to Bayesian inference on weighted sparse networks

The importance of the Nishimori temperature in Bayesian inference was thoroughly
discussed in [12], where the author exhibits a correspondence between the optimal Bayes

3The graph G(V, E) is thus fixed and not a random variable.
4 For the sake of precision, βN behaves as an inverse temperature but, for simplicity, we will refer to it as a temperature.
5We underline here that, to be fully rigorous, βN is not, by definition, a temperature, but rather a parameter of the generative
model of J , i.e. a hidden parameter of the teacher’s generative model.
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inference problem (i.e. when the student knows exactly the generative model of the
teacher) and the RBIM studied at βN.

As a practical and telling example of modern concern of the importance of the
Nishimori temperature in Bayesian statistics, we here consider as a common thread the
problem of binary node classification on a graph. Specifically, let σ ∈ {−1, 1}n be a label
vector assigning each node to a ‘class’. Further assume that a matrix J is drawn from
the distribution (1) and that the student has to infer the vector σ from the observation

of the matrix J̃ , defined by J̃ ij = Jijσiσj. The matrix J̃ has entries that, in expectation,
are positive if nodes i and j have the same label and negative otherwise. As discussed
extensively in section 4, this quite elementary model can in fact be used to study cor-
relation clustering over the p-dimensional feature vectors z1, . . . , zn ∈ Rp of a dataset of
size n [13], with concrete application to image, sound, or sentence classification [14]. In
this example, the weights Jij carried by the edges of G represent some affinity metric
between the features z i and z j associated with nodes i and j (in essence, the larger Jij

the closer z i and z j).

From a Bayesian perspective, inferring σ from J̃ reduces to computing the marginals
of the distribution

P(σ|J̃) = e−βNHJ̃ (σ)

ZJ̃ ,βN

. (3)

This thus coincides with computing the magnetizations m = 〈σ〉βN of an RBIM on the

graph J̃ at the Nishimori temperature. However, assuming that the observing student
knows the value of βN is often unrealistic (in effect, the student only sees J̃) and earlier
works have resorted to studying the problem of mismatched inference (i.e. inference
performed when the student uses a different parameter than the one assumed by the
teacher) [6].

1.3. Our contribution: relating Nishimori to Bethe

Our main result consists in going beyond mismatched inference by providing an efficient
estimate to the Nishimori temperature. To this end, we first draw an explicit relation
between the Nishimori temperature and the smallest eigenvalue of the Hessian matrix
of the Bethe free energy associated to the RBIM, when set at the paramagnetic point
m = 0 (this Hessian matrix is the so-called Bethe-Hessian matrix [15]); this relation
holds under the previously introduced setting, so in particular for a student observation
matrix J supported over a (possibly sparse) Erdős–Rényi graph G. Besides, we observe
and argue that, although the Bethe approximation is particularly adapted to sparse
(locally tree-like) graphs G, the Nishimori–Bethe relation holds for any degree of sparsity
(that is, even when G does not behave locally as a tree).

The main consequences of the Nishimori–Bethe relation, and our main contributions,
consist in

(a) The design of a new efficient spectral algorithm which estimates the Nishimori tem-
perature with asymptotically perfect accuracy (as n→∞); the algorithm is based
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on an iterative fast search of a well-parametrized Bethe-Hessian matrix exhibiting
a smallest amplitude eigenvalue close to zero;

(b) A new spectral algorithm to approximately solve the Bayesian node classification
inference problem of equation (3), which outperforms commonly deployed state-of-
the-art alternatives. We in particular claim that this spectral algorithm is capable
of performing non trivial inference as soon as the Bayesian optimal solution can;

(c) Although we claim that these algorithms are still valid under dense graphs G, they
are specifically adapted to the sparse regime where |V| ∼ |E|; this practically allows
for small computational and memory storage costs when applied to the classification
of the nodes of possibly large graphs; we specifically support this fact by a concrete
application to the classification of 40 000 high resolution images using our proposed
sparse but extremely efficient spectral algorithm.

The remainder of the article is structured as follows. Section 2 introduces the RBIM
together with some basic properties of the Nishimori temperature. These serve as the
support for section 3, which provides our main results: the Nishimori–Bethe relation,
the aforementioned new algorithms to estimate the Nishimori temperature, and how it
provides an approximate (but still accurate) solution to the Bayesian inference problem.
To corroborate the claims made in this section, section 4 applies the results to a concrete
node classification problem involving realistic images produced by generative adversar-
ial networks [16]. Section 5 closes the article laying out some limitations and possible
directions of improvement of the present analysis.

A Julia implementation of our proposed algorithm as well as the codes used
to produce the results of this article is available at github.com/lorenzodallamico/
NishimoriBetheHessian.

Notation: vectors are denoted in bold face. The notation 1n indicates the all ones
vector of size n. Scalar and matrices are in standard font, with matrices denoted by
capital letters. The notation ‘ ◦ ’ indicates the Hadamard entry-wise product between
two matrices of same size. The notation ∂i indicates the neighbourhood of node i on
the graph G(V, E): ∂i = {j ∈ V : (ij) ∈ E}.

2. Basic properties of the RBIM

In this section we provide the basic language and properties necessary to define the
Nishimori temperature. The results presented in this section do not all have a direct
application to inference problems, which are discussed later in section 4.

2.1. Phase diagram

Consider a realization of an Erdős–Rényi graph G(V, E) with expected average degree
c. We will denote V the set of the n nodes of the graph and E the set of its edges. We
further let J ∈ Rn×n be a weighted adjacency matrix on G and distributed according to
the following generative model.
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Definition 1 (Generative model of J). For all edges (ij) ∈ G with i > j, the Jij are
generated independently (with Jij = Jji), for some βN > 0, referred to as Nishimori
temperature, according to

∀ (ij) ∈ E , i < j, Jij
i.i.d.∼ P

P (x) = p0(|x|)eβNx, (4)

where p0(·) is an arbitrary non-negative function satisfying the normalization condition∫∞
−∞ dx p0(|x|)eβNx = 1. If (ij) /∈ E , then Jij = 0.

Given a realization of J and a vector s ∈ {−1, 1}n, we define the Hamiltonian HJ(s)
of the RBIM as

HJ(s) = −
∑
(ij)∈E

Jijsisj = −sTJs. (5)

Note that, from definition 1, the Nishimori temperature is defined independently of
G, while the dependence of p0(·) on βN is relegated to its normalization constant. Two
examples of distributions that fall under this definition are the ±J model

P (x) = pδ(x− J0) + (1− p)δ(x+ J0), for p ∈ [1/2, 1], J0 ∈ R
+

that can be rewritten as

P (x) =
eβNx

2ch(βNJ0)
, with βN =

1

2J0

log
p

1− p
,

and the Edwards–Andersons model [17]

P (x) =
1√
2πν2

exp

{
−(x− J0)

2

2ν2

}
, for J0, ν ∈ R

+

for which

p0(|x|) =
1√
2πν2

exp

{
−
(
x2 + J2

0

2ν2

)}

βN =
J0

ν2
.

Given a matrix J drawn from the generative model of definition 1, equation (5) and
a temperature β ∈ R+, we now let s ∈ {−1, 1}n be a random vector, drawn from the
Boltzmann distribution

μ(s) =
e−βHJ(s)

ZJ ,β
, (6)

where ZJ ,β is the normalization constant. Averaging over the distribution (6) will be
denoted with 〈·〉β.

Let us now consider the phase diagram, depicted in figure 1, of the model described
by equations (5) and (6) and definition 1. First consider the role played by the two
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Figure 1. Phase diagram of the RBIM for Jij ∈ {−1, 1}. The x axis goes from 1
2

for βN = 0 to 1 for βN →∞. The y axis represents T , the inverse of β. The dashed
green line is the inverse of βF, the dash dotted blue line is the inverse of βSG and
the solid red line is the inverse of βN.

parameters β and βN. For increasing values of βN, there is a larger probability for each
edge Jij to carry a positive weight and the minimum of HJ(s) is achieved for s = 1n.
For small values of βN, instead, multiple local minima appear. Concerning β, instead,
for small values, the Boltzmann distribution (equation (6)) tends toward a uniform
distribution, while, for large values, the configurations with small energy HJ(s) have a
larger probability. Consequently, for large β and βN the average configuration of s tends
to align toward 1n: this corresponds to the ferromagnetic configuration. Conversely, for
small values of βN, several edges carry a negative weight, introducing frustration in the
system that is found in the spin-glass phase, for which local order of the spins may be
observed ( 1

n

∑
i〈si〉2β �= 0), but globally the magnetization is null ( 1

n

∑
i〈si〉β = 0). Finally,

at large values of β, the system is in the paramagnetic phase, for which the spins are
randomly aligned and the magnetization is zero.

In the particular case where G is an Erdős–Rényi random graph, with expected
average degree equal to c, the cavity method [18] predicts the position of the transitions
between the three phases: the paramagnetic–ferromagnetic transition occurs at β = βF

and the paramagnetic–spin glass transition occurs at β = βSG, also known as the de
Almeida–Thouless transition [19]. The values of βF, βSG are given as the solutions of the
following equations [6]:

c · E[th(βFJij)] := 1 (7)

c · E[th2(βSGJij)] := 1, (8)

where we recall that E[·] denotes averaging over the distribution (4). Figure 1 precisely
depicts the phase diagram for the ±J model. A qualitatively similar diagram can be
obtained for different distributions that follows the definition of equation (1) [7]. Given
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these premises, we now discuss some relevant properties valid on the Nishimori line, i.e.
when β = βN.

2.2. Relevant properties at the Nishimori temperature

First of all, let us introduce the quenched internal energy density , defined as
u(β) := 1

n
E[〈HJ(s)〉β], where we recall that 〈·〉β denotes an average taken over the

Boltzmann distribution (6) and E[·] is the average over the distribution of equation
(1). It was shown in [7] that u(βN) takes a particularly simple expression:

u(βN) =
1

n
E[〈HJ(s)〉βN] = −1

n

∑
(ij)∈E

E [Jij〈sisj〉βN] = −1

n

∑
(ij)∈E

E[Jij th(βNJij)].

The first two equalities are true by definition. The elegance of the result of [7]
lies in the last relation that identifies—inside the expectation E[·]—the term 〈sisj〉βN
with th(βNJij). We will show in section 3.3 that, for sufficiently small β, the system is
in the paramagnetic phase 〈s〉β = 0 and, under the Bethe approximation, the relation
〈sisj〉β = th(βJij) is verified for any underlying βN. This informally introduces a relation
between the Bethe free energy at the paramagnetic point and the Nishimori temperature,
which is at the center of claim 1.

We introduce the following property of the probability distribution of equation (1).
This relation will be of fundamental use in the following and, in passing, allows us to
rewrite u(βN) as in [7].

Property 1. Let f(x) be an arbitrary odd function. Then

E[f(x) · th(βNx)] = E[f(x)]. (9)

The proof is easily obtained by straightforward calculation. As a consequence of
property 1, the quenched internal energy density at the Nishimori temperature takes
the simple expression:

u(βN) = −1

n

∑
(ij)∈E

E[Jij] = − d̄

2
· E[Jij],

where d̄ denotes the average node degree in the graph G.
Secondly, we recall a well celebrated property of the Nishimori temperature, which

states the absence of replica symmetry breaking on the Nishimori line [6, 8] or, equiv-
alently, that the RBIM at the Nishimori temperature is never in the spin glass phase.
This result can be visually understood in figure 1 by noticing that the Nishimori tem-
perature is either in the paramagnetic or ferromagnetic phase. Moreover, exploiting
property 1 and the definitions of βF, βSG in equations (7) and (8), on an Erdős–Rényi
graph one finds that βSG = βN ⇔ βF = βN. Consequently, there exists a tricritical point
where βF = βSG = βN.

Recalling the connection with statistical inference problems, such as inferring σ
in equation (3), first note that βN is the Bayes optimal inference temperature in the
sense that there exists no other β that can asymptotically achieve better inference
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performance and, therefore, if inference cannot be performed at β = βN, then it is theo-
retically infeasible. This occurs when the marginals of equation (3) asymptotically give
equal probabilities for each σi to take either values ±1. In terms of the phase diagram,
this corresponds to being in the paramagnetic phase, so that βN < βF. In order for non-
trivial reconstruction to be possible, the condition βN < βSG < βF must be imposed [20].
When the condition is met, the system is in the informative configuration in which each
spin gets oriented toward its planted value σi. This being said, replacing (or effectively,
erroneously estimating) βN by β �= βN in equation (3), it may occur that, even though
inference is theoretically possible (as βN < βSG < βF), the estimated labels σ̂ for the
mismatched β are not aligned with the ground truth σ. This never happens at β = βN

for which inference is achieved as soon as theoretically possible.
With this short introduction on the Nishimori temperature at hand, in the

next section we present our main result which relates βN to the spectrum of the
non-backtracking and Bethe-Hessian matrices of the underlying graph G.

3. A relation between βN and the Bethe free energy

This section introduces our main theoretical result, which draws a connection between
the Nishimori temperature and the variational free energy under the Bethe approxi-
mation, computed at the paramagnetic point 〈s〉β :=m = 0. To this end, section 3.1
introduces two fundamental matrices, namely the non-backtracking and the Bethe-
Hessian matrices of the graph G and recalls the known connections between the spectra
of these two matrices. Section 3.2 then introduces our main result, precisely consist-
ing in (i) a claim on the location of the eigenvalues of the non-backtracking matrix
and, as a result of the claim, (ii) an explicit relation between the underlying Nishimori
temperature and a specific eigenvalue of the non-backtracking matrix. We further pro-
vide both theoretical arguments and numerical simulations in support of the result.
As a corollary of the identities listed in sections 3.1 and 3.2, we finally obtain an
explicit relation between the smallest eigenvalue of the Bethe-Hessian matrix and the
Nishimori temperature. Section 3.3 relates this central link to the phase diagram of
figure 1, in passing connecting the results to the expression of the Bethe free energy.
Based on these findings, section 3.4 elaborates an algorithm to estimate βN, which finds
significant importance in statistical inference problems.

3.1. Preliminaries

Let us first introduce the weighted non-backtracking matrix of any arbitrary graph G.
Definition 2 (Weighted non-backtracking matrix). Given a graph G(V, E) and a func-
tion f : E → R, so that ∀ e ∈ E , f(e) = ωe is the weight corresponding to the edge e, the
weighted non backtracking matrix B ∈ R2|E|×2|E| is defined on the set of directed edges
of G as

B(ij),(k	) = δjk(1− δi	)ωk	. (10)

https://doi.org/10.1088/1742-5468/ac21d3 9
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The non-backtracking matrix plays an important role in inference and graph mining
problems [21–27] and naturally comes into play from the linearization of the belief prop-
agation (BP) (or cavity) equations [18] for the RBIM. These equations are particularly
adapted to dealing with locally tree-like structured graphs (such as sparse Erdős–Rényi
graphs).

The eigenvalues of the matrix B are strongly related to the eigenvalues of the Bethe-
Hessian matrix.

Definition 3 (Bethe-Hessian matrix). Given a graph G(V, E), a function f : E → R so
that ∀ e ∈ E , f(e) = ωe and a parameter x ∈ C \ {±ωij}(ij)∈E , the Bethe-Hessian matrix
H(x) ∈ Cn×n is defined as

Hij(x) =

(
1 +

∑
k∈∂i

ω2
ik

x2 − ω2
ik

)
δij −

x ωij

x2 − ω2
ij

. (11)

Since G is an undirected graph, H(x) is symmetric but not Hermitian, unless
x ∈ R. The relation between the spectra of the matrices B and H(x) is given by the
Watanabe–Fukumizu formula [28, 29].

Property 2 (Watanabe–Fukumizu). Let H(x) and B be defined as per (10) and
(11) on the same graph G and for the same weighting function f. Further let x ∈
C \ {±ωij}(ij)∈E . Then,

det
[
xI2|E| −B

]
= det [H(x)]

∏
(ij)∈E

(
x2 − ω2

ij

)
, (12)

so that, for all x in the spectrum of B, det[H(x)] = 0.

With this preliminary information, we now proceed to the formulation of our main
result which first consists in a conjecture on the spectrum of B, and which we then relate
to the spectrum of H(x) through property 2. Choosing f(e) = th(βJe) in the definition
of B, where the weights Je are distributed according to equation (4), we finally unfold
the relation between the spectra of B, H(x) and the Nishimori temperature.

3.2. Main result

We now proceed to studying the spectrum of the matrix B in the case where G is
an Erdős–Rényi graph and its weights ωe (equation (10)) are drawn i.i.d. satisfying
|ωe| < 1 with E[ω] > 0 sufficiently large. The interest of this setting in relation to the
RBIM and the Nishimori temperature is to consider ωe = th(βJe) for βN > βSG and
J as per definition 1. In this particular case, one of the eigenvalues of B—and, as a
consequence of property 2, a corresponding (more easily estimated) eigenvalue of the
Bethe-Hessian matrix—has a direct relation with βN.

The matrixB is not symmetric, hence its eigenvalues are not necessarily real. Since B
is real though, the non-real eigenvalues come in complex-conjugate pairs. When weights
are assigned independently at random in the interval (−1, 1), we observe, in agreement
with the theoretical results obtained on the spectrum of B [30–33], that in the n→∞
limit, the non-real eigenvalues of B are bounded by a circle on the complex plane and
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Figure 2. Spectrum of the matrix B in the complex plane. The entries Jij are
generated independently according to N (J0, ν

2). The weights appearing in equation
(10) are defined as ωij = th(βJij). (Left) Dense regime: n = 250, c = 2 log2(n), J0 =
1, ν = 4, β = 1. (Right) Sparse regime: n = 3000, c = 5, J0 = 1, ν = 1, β = 10. For
both plots, the dashed blue line corresponds to cE[th(βJ)], the dash-dotted green
line to E[th2(βJ)]/E[th(βJ)], while the black continuous line is the circle in the

complex plane centred at the origin and of radius
√
cE[th2(βJ)].

are separated by a vanishing distance from one another. These eigenvalues form the
bulk of the spectrum of B (see figure 2). There further exists one real eigenvalue which
is instead isolated , i.e. it is found at a macroscopic (not decreasing with n) distance
from all other eigenvalues. This eigenvalue has a modulus greater than the radius of
the bulk: its existence and position are known and have been thoroughly investigated
[32, 33]. There however exists another real isolated eigenvalue with modulus smaller
than the radius of the bulk, the existence and importance of which were first evidenced
in [34] in the case of unweighted graphs with a community structure. After [34], a similar
phenomenon has also been observed in [35] in the context of phase retrieval, relating
the Hessian of the TAP free energy and the Bayes optimal inference temperature. This
isolated eigenvalue inside the bulk of B received less theoretical attention and it is the
main object of our central result.

Claim 1. Let G(V, E) be a realization of an Erdős–Rényi random graph with n nodes
(n→∞) and expected average degree c. For each undirected edge (ij) ∈ E a weight ωij =
ωji ∈ (−1, 1) is assigned independently at random. Further assume that E[ω2

ij]/E[ωij] � 1

and E[ω2
ij]/E

2[ωij] < c. Then, the spectrum of B, with high probability, can be described
as follows:

• There exist only two real eigenvalues in the spectrum of B with modulus greater or
equal to one:

λ1 = cE[ω] + o(c), λ−1 =
E[ω2]

E[ω]
+ o(1). (13)
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The eigenvalue λ1 is the largest in modulus in the spectrum of B;

• All eigenvalues with non-zero imaginary part have a modulus bounded by R =√
cE[ω2] + o(

√
c).

Note that claim 1 does not make the assumption that c→∞ as n→∞, nor that
c = On(1). Extensive simulations indeed concur in suggesting that the claim holds in
both dense and sparse graph regimes. The claim is thus stated for any average degree, so
long that the underlying graph is of the Erdős–Rényi type. In detail, the technical con-
dition E[ω2

ij]/E
2[ωij] < c is set to enforce that the leading eigenvalue λ1 is greater than

the radius of the bulk spectrum (hence that it is isolated) and that λ−1 is smaller than
the radius of the bulk: a transition occurs at E[ω2

ij]/E
2[ωij] = c where both eigenvalues

coincide: λ1 = λ−1. This inequality condition will thus ensure, when it comes to statis-
tical inference, that non-trivial σ ∈ {±1}n configurations can be theoretically recovered
(i.e. that the inference problem is feasible). As a practical support to claim 1, figure 2
displays the spectrum of the matrix B in both moderately dense (c ∼ log2(n)) and sparse
(c = On(1)) regimes.

The fundamental corollary of claim 1 is that, in the case of present interest where
ωe = th(βJe), from equation (13), the inner eigenvalue λ−1 of B is equal to

λ−1 =
E[th2(βJ)]

E[th(βJ)]
+ o(1).

Exploiting property 1, it follows immediately that, at β = βN,

λ−1 =
β=βN

1 + o(1).

Tuning the value of β until λ−1 = 1 thus provides a method to estimate βN. The ques-
tion on how to efficiently exploit this essential remark from an algorithmic standpoint
will be further discussed in section 3.4.

Before pushing further our main line of deductions, we first introduce some argu-
ments in support of claim 1, which we provide first in the dense and then in the sparse
regimes. These are ‘arguments’ in the sense that they lack of full mathematical rigor
and do not provide a formal proof of claim 1. Specifically, for the dense regime, we adopt
a perturbative approach in which we heuristically show that the eigenvalues of B with
modulus greater than one are close to the eigenvalues of the (easy to study) matrix M 0

appearing in equation (17). In the sparse regime, instead, we note that the position of
the largest isolated eigenvalue and the radius of the bulk of B obtained in the dense
case match the rigorous results of [32] proved for the sparse regime. With the support
of extensive numerical simulations, we conjecture that the same result obtained in the
dense regime to describe the inner isolated eigenvalue holds in the sparse regime as well.

3.2.1. Arguments in support of claim 1.

3.2.1.1. Dense graphs We first consider a dense graph regime, i.e. when the average
degree c goes to infinity faster than log(n). This argument is inspired from the proof
provided in [33] for unweighted dense graphs with a community structure. The proof
of [33] can be straightforwardly adapted to the binary case in which f(e) ∈ {±ω}, but
does not unfold so directly for generic functions f.
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The main advantage of the dense regime follows from the fact that the degree distri-
bution of G is almost regular and the Erdős–Rényi graph is close to a c-regular graph
[36], the analysis of which is easier to handle. This makes it possible to relate the eigen-
values of B to those of W ∈ Rn×n, defined as Wij = ωij if (ij) ∈ E and zero otherwise.
The idea is to create a sequence of matrices M(g) ∈ R2n×2n (one for each eigenvector g
of B), in the spirit of a proof proposed by Bass of the celebrated Ihara–Bass formula
[37], and to show that all the eigenvalues of M(g) can be approximated, in the large n
limit, by the eigenvalues of a common matrix M 0 independent of g , so long that g is
an eigenvector corresponding to an eigenvalue λ of B for which |λ| � 1. It is the precise
study of the spectrum of the limiting M 0 which induces the results of claim 1.

More specifically, let g ∈ C2|E| be an eigenvector of B with eigenvalue λ, satisfying
|λ| � 1 and let ω ∈ R2|E| be the vector containing the weights of the non-zero entries of

the matrix B (and recall that ωij = ωji). Then define the vectors ψ(g), ψ̃(g) ∈ Cn as

ψi(g) =
∑
j∈∂i

ωijgij, ψ̃i(g) =
∑
j∈∂i

ω2
ijgji (14)

and F (g) ∈ C2n×2n be any matrix satisfying

[F (g)ψ(g)]i =
∑
j∈∂i

ω3
ijgij. (15)

We now wish to relate the quantities ψ(g), ψ̃(g),F (g) to the eigenvalues of B. In
particular,

λψi(g) = ψi(Bg) =
∑
j∈∂i

ωij

∑
(k	)

δjk(1− δi	)ωklgk	 =
∑
j∈∂i

ωij

[∑
l∈∂j

ωj	gj	 − ωjigji

]

= [Wψ(g)]i − ψ̃i(g)

and, similarly,

λψ̃i(g) = ψ̃i(Bg) =
∑
j∈∂i

ω2
ij

∑
(k	)

δik(1− δj	)ωk	gk	 =
∑
j∈∂i

ω2
ij

[∑
	∈∂i

ωi	gi	 − ωijgij

]

= [DWψ(g)]i − [F (g)ψ(g)]i,

where DW ∈ Rn×n is the diagonal matrix with [DW ]ii =
∑

j∈∂iω
2
ij. Thus, the eigenvalue

λ is also an eigenvalue of the matrix

M(g) =

(
W −In

DW − F (g) 0

)
. (16)

The main difficulty of the analysis is of course introduced by the matrix F (g) which
is different for each eigenvector of B associated to |λ| > 1. In the binary case in which
Wij ∈ {±ω} for all (ij) ∈ E , this term simplifies: combining equations (14) and (15),
we get F (g)ψ = ω2ψ and F (g) thus simplifies for all g into F (g) = ω2In; this allows
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for a straightforward adaptation of the proof of [33]. The non-binary case is, however,
more involved, but the term (DW − F (g))ψ is still dominated by the action of DW :∣∣∣∣ [F (g)ψ(g)]i

ψi(g)

∣∣∣∣ =
∣∣∣∣∣
∑

j∈∂iω
3
ijgij∑

j∈∂iωijgij

∣∣∣∣∣ = o(c).

For the last equality, we exploited the fact that ωij and ω3
ij are both bounded in

(−1, 1) and have the same sign: this step is reasonable but non-rigorous, the main the-
oretical difficulty arising from the dependence between ωij and gij. Consequently, F (g)
can be regarded as a small perturbation of DW . Further exploiting the concentration of
the degrees, one may thus write∥∥(DW − F (g))− cE[ω2]In

∥∥ = o(c).

The eigenvalues of M(g) can therefore be approximated by those of the matrix

M0 =

(
W −In

cE[ω2]In 0

)
. (17)

The spectrum of M 0 is trivially related to the spectrum of W . Letting {μi}i=1,...,n be
the eigenvalues of W and {λ0,i}i=±1,...,±n those of M 0, by the block determinant formula
(section 5 of [38]), it comes that

λ0,±i =
μi ±

√
μ2
i − 4cE[ω2]

2
. (18)

In particular, it unfolds that

μ2
i � 4cE[ω2] =⇒ λ0,−i =

cE[ω2]

λ0,i
≡ R2

λ0,i

μ2
i < 4cE[ω2] =⇒ |λ0,±i| =

√
cE[ω2] ≡ R.

Applying successively Wigner’s semi-circle theorem [39] and Bauer–Fike’s theorem
[40], we thus have that

μ1 = cE[ω] + o(
√
c), |μi|i�2 �

√
cE[ω2] + o(

√
c). (19)

Combining equations (18) and (19), along with the fact that the eigenvalues
{λ0,±i}i=1,...,n are a close approximation to the eigenvalues of B with modulus greater
than one, we obtain the formulation of claim 1. Figure 3 compares the spectra of the
matrices M(g) and M 0, which should be themselves compared to the left display in
figure 2. Appendix A provides the explicit expressions of the matrix F (g) used in
figure 3.

This technical argument provides important intuitions on the spectrum of B: (i) the
leading eigenvalue of B (the largest in modulus) is determined by the expectation of the
entries of W ; (ii) the radius of the bulk of B is determined by the expectation of the
squared entries of W ; (iii) all eigenvalues of B with modulus greater than one come in
pairs (see equation (18)): they are complex conjugates if their imaginary part is non-zero
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Figure 3. (Left) Spectrum of the matrices M(g) defined in equation (16) with g ,
one of the eigenvectors of B attached to a complex eigenvalue. (Right) Spectrum of
M0, defined in equation (17). The graph considered is the same for the two matrices,
with n = 1500, c = log2(n). The matrix W = th(βJ), with β = 1 and the entries Jij

are i.i.d. normal variable with J0 = 1 and ν = 3. The blue dotted line is the position
of cE[th(βJ)], the green dash-dotted line is the position of E[th2(βJ)]/E[th(βJ)],

while the black solid line is the circle in the complex plane of radius
√

cE[th2(βJ)].

or harmonic conjugate if they are real. This last observation justifies the existence of a
real isolated eigenvalue inside the bulk of B, the importance of which will be further
discussed in section 3.3.

As a downside, the setting considered in this section is, somehow, too simplistic.
The analysis allowed us to neglect the term F (g), which plays the role of the Onsager
reaction term [41] which does not appear in the näıve mean-field approximation but
plays a crucial role in the Bethe approximation. The fact that F (g) can be neglected
thus indicates that the regime under consideration is somehow too simple, the spectral
behaviour of B being fully determined by W .

Consequently, we next discuss the far more interesting sparse regime in which the
Onsager reaction term plays a fundamental role and in which the Bethe approxima-
tion brings a decisive advantage over the näıve mean-field approximation. In the sparse
regime, the structure of the spectrum of the matrix B is essentially preserved, as well
as the fact that all its eigenvalues all come in real harmonic or complex conjugate pairs.

3.2.1.2. Sparse graphs The Bethe approximation is exact on trees [18] and asymp-
totically yields (in the large n limit) exact results on locally tree-like graphs. This is
precisely the case of sparse Erdős–Rényi graphs, in which the average degree is of order
c = On(1). In this case, the spectrum of the matrix W is no longer formed by an isolated
eigenvalue (the largest in modulus) and a bulk of eigenvalues close to each other that
follow the semi-circle law, as it happens in the dense regime discussed in the previous
paragraph. Here the eigenvalues of W are known to have an unbounded support (little
else is in fact theoretically known about this spectrum).
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The non-backtracking matrix B, instead, essentially preserves the same spectral
structure as in the dense regime, in which the bulk eigenvalues are bounded by a circle
in the complex plane, as shown in figure 2. This result was recently proved in [32]
in which the authors showed that, under the assumptions of claim 1, the matrix B
has an isolated eigenvalue equal to λ1 = cE[ω] + on(1), (recall that c = On(1)) while all

other eigenvalues satisfy |λi�2| �
√
cE[ω2] + o(1). The result of [32] however does not

mention the existence of inner real eigenvalues in the spectrum of B and, to best of
our knowledge, no mathematical tool has been developed yet to rigorously address this
question in the sparse regime. Yet, the position of the leading eigenvalue of B and the
radius of its bulk spectrum are the same as in the dense graph case. We then conjecture,
supported by extensive simulations, that also the inner isolated eigenvalue has the same
position as in the dense regime, given by the square radius of the bulk, divided by the
leading eigenvalue of B.

We take the opportunity of the reference to [32] to generalize the central claim of
the article to their richer context. This result is of independent interest, particularly for
more structured graph models.

Remark 1 (Random sparse graphs with independent entries). Note that the result
of [32] is given under more general hypotheses than those discussed here. Specifically,
the authors of [32] consider a setting in which each edge of the graph G is created
independently at random with probability pij. The Erdős–Rényi graph falls into the

particular case in which P = {pij}ni,j=1 =
c
n
1n1

T
n . The leading (real) eigenvalues of B are

determined from the leading eigenvalues of P ◦ E[W ], and the bulk radius by the leading
eigenvalue of P ◦ E[W ◦W ]. Based on this result, we conjecture that the real eigenvalues
of B come in harmonic pairs precisely determined by

λ±i =
ρ (P ◦ E[W ◦W ])

γi (P ◦ E[W ])
,

where ρ(·) indicates the largest eigenvalue in modulus, and γi(P ◦ E[W ]) are the

eigenvalues of P ◦ E[W ], greater than
√
ρ (P ◦ E[W ◦W ]).

A particular case of this setting is the degree-corrected stochastic block model which
reproduces a k-class structure on an unweighted graph. In this case, the matrix E[W ]

has a low rank factorization E[W ] = 1
n

∑k
i=1 αiuiu

T
i , with α1 = c. Furthermore P = θθT ,

where θT1n = n and 1
n
θTθ :=Φ. Then, in agreement with [30] and the conjecture of [34],

the eigenvalues of B can be described as follows

λi = αiΦ+ on(1) for 1 � i � k

λ−i =
c

αi
+ on(1) for 1 � i � k

|λi>k| �
√
cΦ+ on(1).

Returning to the implications of claim 1 of immediate interest, recall that the claim
makes it possible to relate the Nishimori temperature to the specific eigenvalue λ−1

of the matrix B. From a numerical standpoint though, λ−1 is not easily accessible for
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two reasons: (i) the matrix B is non-symmetric and large, slowing down eigenvalue
computations; (ii) since λ−1 is smaller in modulus than most of the complex eigenvalues
of B, while not being the smallest in modulus (see figure 2), one needs to compute all the
bulk eigenvalues of B in order to access λ−1: this comes at an impractical computational
cost of O(cn3) with state of the art methods (see, for example, [42]). We next show that,
as a consequence of claim 1 and property 1, the (symmetric) Bethe-Hessian matrix
H(x) (11) can be efficiently used to estimate βN in the RBIM with a computational cost
scaling as O(nc).

3.3. The relation between βN and the Bethe-Hessian matrix

This section elaborates on our final relation between the Bethe-Hessian matrix and the
Nishimori temperature, as well as on how the respective spectra of the matrices H(x)
and B can be related to the phase diagram of figure 1.

3.3.1. The Bethe free energy. Let us first recall the basics of a variational approach,
and specifically of the Bethe approximation. For μ(s) the Boltzmann distribution (6),

the free energy FJ ,β and the variational free energy F̃ J ,β(q) (given for an arbitrary set
of parameters q), are defined through

FJ ,β =
∑
s

μ(s) (βHJ(s) + log μ(s)) (20)

F̃ J ,β(q) =
∑
s

pq(s) (βHJ(s) + log pq(s)) . (21)

The function FJ ,β is a moment generating function for the Boltzmann distribution
of equation (2) but, in general, cannot be computed exactly. The variational free energy

F̃ J ,β(q) represents a tractable approximation of FJ ,β. From a straightforward calculation

it can in particular be shown that F̃ J ,β(q)− FJ ,β = DKL(μ‖pq) � 0, where DKL(·‖·) is
the Kullback–Leibler divergence between two distributions. For a parametrized family
of distributions pq , minimizing the variational free energy with respect to q provides the
Kullbach–Liebler optimal approximation of FJ ,β. The variational Bethe approximation
considers a mean- and covariance-parametrized distribution pq = pm ,χ defined as

pm,χ(s) =
∏
(ij)∈E

1 +misi +mjsj + χijsisj
4

·
n∏

i=1

[
1 +misi

2

]1−di

, (22)

where mi and χij are the average of si and sisj according to pm ,χ(s), respectively. Here
di denotes the degree of node i (di = |{j : (ij) ∈ E}|). The approximation turns out to
be the exact factorization of μ(s) when G is a tree, and is thus often claimed a good
approximation of it in sparse, tree-like graphs.

A complete derivation of the Bethe-Hessian matrix from the Bethe free energy is
proposed in [15]. It is instructive though to recall its main steps which allow one to
relate the Bethe-Hessian matrix eigenvalues to the phase diagram of figure 1. From the
expression of F̃Bethe

J ,β (m,χ), obtained combining equations (21) and (22), one obtains

that ∇mF̃
Bethe
J ,β (m,χ)|m=0 = 0, i.e. the paramagnetic point is always an extremum of
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the Bethe free energy. In order to study the stability of this solution, we consider the
Hessian matrix of the variational free energy, computed at the paramagnetic point: the
smallest eigenvalues of this matrix are associated to the local directions along which the
paramagnetic solution may get unstable and non-trivial order in the spin configurations
can be observed. This Hessian matrix explicitly reads:

∂2F̃Bethe
J ,β (m,χ)

∂mi∂mj

∣∣∣∣∣
m=0

= δij

(
1 +

∑
k∈∂i

χ2
ik

1− χ2
ik

)
− χij

1− χ2
ij

. (23)

By further computing the gradient of F̃Bethe
J ,β (m,χ) with respect to χ, one next obtains

χij = th(βJij) (as already mentioned in the section 2 where we pointed that, in the
paramagnetic phase, 〈sisj〉β = th(βJij) under the Bethe approximation). Setting ωij =
th(βJij), the matrix of equation (23) precisely corresponds to H(1) defined in equation
(11). We denote this matrix Hβ,J , which explicitly reads:

(Hβ,J)ij = δij

(
1 +

∑
k∈∂i

th2(βJik)

1− th2(βJik)

)
− th(βJij)

1− th2(βJij)
. (24)

We may now relate the Bethe approximation to the phase diagram of figure 1.

3.3.2. Phase diagram. Let us move back to the system described by equations (5) and
(6) and definition 1, first set at sufficiently high temperature (small β). In this case, for
all βN the system is in the paramagnetic phase, for which 〈si〉β = 0. The paramagnetic

solution m = 0 is a minimum of F̃Bethe
J ,β (m,χ), Hβ,J is positive definite.

Consider now βN to be sufficiently large, so that the system undergoes to a paramag-
netic–ferromagnetic phase transition (see figure 1). For β = βF defined as cE[th(βFJ)] =
1, the leading eigenvalue of B is equal to 1 and one of the eigenvalues of Hβ,J is equal
to zero. This eigenvalue is necessarily the smallest, since for β < βF all the eigenvalues
are positive.

For small values of βN, the system undergoes the paramagnetic–spin glass phase
transition (see figure 1) at the temperature β = βSG defined so that cE[th2(βSGJ)] = 1.
For this value of β, the radius of the bulk of the matrix B is equal to one and the bulk
of Hβ,J is asymptotically close to zero.

Finally, further decreasing the temperature, at β = βN defined by E[th2(βNJ)] =
E[th(βNJ)], the eigenvalue λ−1 is equal to one and the smallest eigenvalue of Hβ,J reaches
zero for the second time. In figure 4, we show the spectra of the matrices B and Hβ,J

at β < βF, β = βF, βSG, βN that confirm the relation between the spectra of these two
matrices and the phase diagram.

Having established in depth the relation between the matrices B and H(x), and
their relations to the phase diagram, we now show how one can efficiently estimate βN,
exploiting the smallest eigenvalue of Hβ,J .
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Figure 4. (First row) Spectrum of the matrix B in the complex plane for differ-
ent values of β; (second row) histogram of the eigenvalues of Hβ,J (zoomed in on
the smallest eigenvalues) for different values of β. (First column) β = 0.5βF, para-
magnetic phase; (second column) β = βF paramagnetic–ferromagnetic transition;
(third column) β = βSG paramagnetic–spin glass phase transition; (fourth column)
β = βN, Nishimori temperature. For all matrices, the same graph was used with
n = 1000, c = 10. The weights of the edges are ωij = th(βJij) for the different values
of β just described. The Jij are drawn independently from a Gaussian distribution
with J0 = 1 and ν = 1.5. The blue lines in the first row is the vertical line at x = 1,
while the purple line in the second row is the vertical line at x = 0.

3.4. Estimation of βN from Hβ,J

The present section provides a numerically efficient estimator β̂N of the Nishimori tem-
perature, first defined formally and then under the form of the output of a practical
algorithm.

The proposed value of β̂N, estimate of the genuine Nishimori temperature βN, reads

β̂N = max
β

{β : γmin(Hβ,J) = 0} , (25)

where γmin(·) indicates the smallest eigenvalue of a matrix. Under this definition, not

only does β̂N provides a consistent estimate of βN for J distributed as definition 1, this
being a consequence of claim 1, but it also provides the ‘best guess’ of an hypotheti-
cally corresponding βN for matrices J which would follow a different distribution from

the model of definition 1. Indeed, β̂N has the advantage of always being defined, even
for arbitrary matrices J , while having a clear interpretation for the class of matrices
that fall under definition 1. This definition is particularly reminiscent of the algorithm
proposed in [43] for community detection over sparse heterogeneous graphs, and which
demonstrates a robust behaviour on applications to real-world graphs.

https://doi.org/10.1088/1742-5468/ac21d3 19

https://doi.org/10.1088/1742-5468/ac21d3


J.S
tat.

M
ech.

(2021)
093405

Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs

Figure 5. (Left) Computation of β̂N for different values of βN. The blue dots repre-
sent the ratio between β̂N, computed with algorithm 1 and the analytical value of
βN. The purple hexagons are the value of βSG/βN, while the orange line is at y = 1.
For these plots, n = 10000 and c = 5. The weights of the non-zero entries of J
are distributed i.i.d. according to N (J0, ν

2) for J0 ranging from J0 = 0.5 to J0 = 4
and ν = 3.5. Averages are taken over ten samples. (Right) Behaviour of the two
smallest eigenvalues of Hβ,J as a function of β. The solid line indicates the smallest
eigenvalue, while the dotted line is the second smallest. The vertical lines are set
at βF < βSG < βN. For this simulation, n = 30000 and c = 10. The weights of the
matrix J are distributed i.i.d. according to a N (J0, ν

2) with J0 = 1 and ν = 1.5.

To best understand the rationale behind the definition of β̂N, first observe that
Hβ,J is positive definite for all small values of β (limβ→0Hβ,J = In). By increasing β,
the smallest eigenvalue eventually hits zero a first time before turning negative: the
zero-crossing occurs precisely at β = βF. Then, continuing increasing β, at β = βSG,
the second smallest eigenvalue of Hβ,J is asymptotically equal to zero and γmin(Hβ,J)
is now negative. Finally, for β →∞, Hβ,J is again positive definite (the result can be
easily obtained using Gershgorin’s circle theorem). Therefore, there must exist a value
β > βSG for which γmin(Hβ,J) = 0 for a second time. This second zero-crossing occurs

precisely when β = β̂N. The right display of figure 5 visually explains this behaviour.
The basic idea of the proposed algorithm to compute β̂N precisely consists in starting

from β = βSG to then find the value of β > βSG for which γmin(Hβ,J) = 0. Following this
argument, we propose an iterative algorithm based on Courant–Fischer theorem to
compute β̂N. The output of algorithm 1 is depicted in the left display of figure 5. Note
in particular that, as long as βSG < βN, i.e. so long that E[th

2(βJij)]/E
2[th(βJij)] < c, the

value of β̂N is a good estimate of βN. When the condition is instead not met, β̂N simply
coincides with βSG. A more detailed analysis of algorithm 1 is provided in appendix B.
The numerical advantage of exploiting the Bethe-Hessian matrix is decisive. First Hβ,J

is symmetric and of size n× n regardless of the average node degree. Most importantly,
the only eigenvalue of Hβ,J that needs be computed is the one of smallest amplitude, so

that β̂N can be estimated at an O(nc) computational cost (using the Arnoldi method
[42]).

While from a purely physics standpoint, claim 1 is an elegant theoretical relation
between the Nishimori temperature and the Bethe-Hessian matrix, when it comes to
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Algorithm 1. Compute_β̂N.

machine learning applications, estimating βN may have practical impact on algorithm

performance. In particular, β̂N may be used as an approximation of βN when solving
statistical inference on σ (for instance, via an optimal linearization of the Bayes optimal
solution) in the absence of knowledge of the parameters in the generative model (3).

4. Application to node classification

This section discusses one of the immediate applications of the results introduced in the
previous sections to the context of Bayesian statistical inference, and specifically to the
problem of unsupervised node clustering on a graph. To this end, we first establish the
relation between the Bayesian optimal inference and the Nishimori temperature, specific
to the node classification problem; this then allows us to particularize algorithm 1 to this
setting. Possibly most importantly, we conclude by commenting on how the considered
model may be extrapolated to perform clustering on (possibly sparse) adjacency matrices
of real data and relate our resulting proposed algorithm to commonly used competing
spectral algorithms.

4.1. A generative model for node classification

Let G be the realization of an Erdős–Rényi graph whose nodes are divided in two non-
overlapping classes, labeled via the vector σ ∈ {−1, 1}n. Associated to G is a weighted

adjacency matrix J̃ ∈ Rn×n with probability distribution:

P(J̃ |σ) =
∏
(ij)∈E

p0(|J̃ ij|)eβNJ̃ ijσiσj , (26)

for an arbitrary non negative function p0(·) and for some βN > 0. According to this
model, the edges connecting nodes in the same community are more likely to be positive,
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while those connecting nodes in opposite communities are instead more likely to be
negative. Given a realization of J̃ , the task of the experimenter (who only has access

to J̃) is to infer the vector σ. We can formulate this problem in terms of a Bayesian
inference:

P(σ|J̃) = P(J̃ |σ)P(σ)
P(J̃)

=
1

ZJ̃

exp

⎧⎨
⎩

∑
(ij)∈E

βNJ̃ ijσiσj

⎫⎬
⎭ . (27)

Computing the marginals of P(σ|J̃) is equivalent to computing the average magnetiza-

tion of an Ising model on J̃ at the Nishimori temperature. However, the value of βN

cannot be easily inferred from J̃ without knowing σ: one would indeed need to solve

E[th(βNJ̃ ijσiσj)] = E[th2(βNJ̃ ijσiσj)].

To progress further, let us next introduce the matrix J = J̃ ◦ σσT . Given the prob-
ability distribution of J̃ (26), the matrix J is exactly defined as per definition 1. The
key result to proceed consists in observing that the matrices Hβ,J and Hβ,J̃ have the
same eigenvalues and, up to a gauge transformation, the same eigenvectors. This then
enables the use of algorithm 1 to estimate βN directly from J̃ . Let indeed x ∈ Rn be an
eigenvector of Hβ,J̃ with eigenvalue λ and let y have entries yi = xiσi. Then

λyi = λxiσi = σi

∑
j

(
Hβ,J̃

)
ij
xj = σi

∑
j

(Hβ,J)ijσiσjxj = (Hβ,Jy)i

so that λ is an eigenvalue of Hβ,J with eigenvector y . Consequently, the smallest eigen-
value of HβN,J̃

is asymptotically close to zero and algorithm 1 can be used to estimate
βN.

4.2. The Nishimori temperature-based node classification algorithm

For the purpose of node clustering though, the knowledge of βN is a necessary prereq-
uisite to obtain a precise estimate of the genuine node classes σ. We indeed show next
that a powerful estimator of σ is obtained directly from the signs of the entries of the
eigenvector x of the Bethe-Hessian matrix HβN,J̃

(so βN needs be known) associated to
its smallest amplitude eigenvalue (which we now know is close to zero).

To this end, let us first consider y , the eigenvector associated to the smallest eigen-
value of HβN,J . Denote with A ∈ {0, 1}n×n the symmetric adjacency matrix of G, defined
by Aij = 1 if (ij) ∈ E , and Aij = 0 otherwise, and let D ∈ Nn×n be the diagonal degree
matrix D = diag(A1n). Then, applying property 1, one easily obtains that

E [HβN,J ] = In + E

[
th(βJij)

1− th2(βJij)

]
(D −A) . (28)

From a straightforward calculation (see proposition 1 of [44]), the vector 1n is the eigen-
vector of E[HβN,J ] associated to its eigenvalue of smallest amplitude. As a consequence,

from the relation between x and y (or equivalently between J̃ and J) in the previ-
ous section, the vector σ is the eigenvector of E[HβN ,J̃ ] associated with its eigenvalue
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Algorithm 2. The Nishimori–Bethe relation for node classification.

input: Weighted adjacency matrix of a graph J̃ ∈ R
n×n, precision error ε ∈ R;

output: Value of β̂N ∈ R
+, estimated label vector σ̂ ∈ {−1, 1}n;

Shift the non-zero J̃ ij as: J̃ ij ← J̃ ij − 1
2|E|1

T
n J̃1n;

Compute β̂N ← Compute_β̂N (algorithm 1);
Compute Hβ̂N,J̃

(equation (24));

Compute x ← the eigenvector associated to γmin(Hβ̂N,J̃
);

Estimate σ̂ as the output of two-class k-means on the entries of x ;
return: βt, σ̂.

of smallest amplitude. Consequently, the eigenvector with zero eigenvalue of HβN,J̃
is a

close approximation6 of σ.
This conclusion immediately translates into algorithm 2, a numerical method to infer

the genuine node classification σ. Further detail on the practical implementation of this
algorithm are provided in appendix B.

Having established a ‘Nishimori-optimal’ version of the Bethe Hessian-based spectral
clustering for node classification, the next section discusses the relation between the
proposed algorithm and other commonly used kernel matrices in the spectral clustering
literature.

4.3. Relation to other spectral methods

In the following, we use the overlap

Overlap =

∣∣∣∣∣2
(
1

n

n∑
i=1

δσi,σ̂i
− 1

2

)∣∣∣∣∣ . (29)

as a measure of comparison of the inference performance of various node classification
algorithms, where σ̂i is the estimated label of node i. The overlap ranges from 0 (ran-
dom assignment) to 1 (perfect assignment). Figure 6 compares the overlap achieved
by algorithm 2 versus the näıve mean field approach, consisting in estimating the
labels from the dominant eigenvector of J̃ , and versus the popular legacy spectral
clustering algorithm based on the weighted graph Laplacian matrix L = D̄ − J̃ , where
D̄ = diag(|J̃ |1n) [45].7 The figure browses several values of βN (the larger βN, the eas-
ier the detection problem) and of the average degree c. For c = 3, 15 the output of
the asymptotically optimal BP algorithm is further shown, evidencing that algorithm 2
achieves an almost optimal performance. Due to its computational complexity, we chose
not to run BP for c = 50, but we expect to observe a similar result to the one obtained
for c = 3, 15. Before discussing the achieved results, let us first justify our comparison
choice by recalling the rationale behind the Laplacian and näıve mean-field approaches.

6 Rigorously, it is not so straightforward to move from E[HβN,J ] to HβN,J . In [34], a similar setting is considered in which the
eigenvector x is studied in depth. The article argues that the relation indeed holds.
7 Here | · | is the entry-wise absolute value.
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Figure 6. Overlap performance as a function of βN/βSG and three different values of
the expected average degree, c. For βN < βSG inference is asymptotically unfeasible.
Two classes of equal size are considered and the entries of J are generated inde-
pendently according to a Gaussian with mean J0σiσj . In the examples, n = 30 000
and n average is taken over 10 simulations.

4.3.1. The weighted Laplacian matrix. A very classical spectral clustering method in
weighted graphs (dating back from the earliest works on the subject [44]) exploits the

weighted Laplacian matrix L = D̄ − J̃ , where D̄ = diag(|J̃ |1n). As shown in [44, 45], the
eigenvector attached to the smallest eigenvalue of L provides a (discrete to continuous)
relaxed solution of the NP-hard optimization signed ratio-cut graph clustering problem.
The idea underlying the signed ratio-cut procedure consists in inferring the label assign-
ments σ by maximizing the number of edges with positive weights connecting nodes in
the same community, while minimizing the number of edges with negative weights con-
necting nodes in opposite communities: this is however a discrete optimization problem,
a continuous relaxation of which coincides with a minimal eigenvector problem for L.

A particularly immediate and best understood scenario is the case of signed graphs ,
in which the entries of J̃ assume values in ±1. For this class of graphs, an explicit
relation between the matrices L and HβN,J̃

arises in the limit of trivial clustering, i.e.
as βN →∞. For signed graphs, a slightly different definition of Hβ,J̃ than (24) is most
appropriate:

H signed

β,J̃
= (1− th2(β))In + th2(β)D − th(β)J̃ . (30)

It is straightforward to notice that the signed and unsigned versions of the Bethe-Hessian
matrix share the same set of eigenvectors on a signed graph while their eigenvalues only
differ by a multiplicative constant. One then immediately finds that limβN→∞H signed

βN,J̃
= L.

The signed Laplacian may then be seen as the zero temperature limit of the Bethe-
Hessian matrix. From a Bayesian inference standpoint (27),H signed

βN,J̃
is a linear approxima-

tion of the exact inference problem, while L is only an approximation for the maximum
a posteriori probability problem8. Far from the limit of trivial recovery, our proposed
Bethe-Hessian matrix-based method is thus expected to accomplish better inference

8Taking the limit βN →∞ in equation (27) is equivalent to looking for the maximum a posteriori solution.
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performance when compared to the weighted Laplacian approach. This is indeed con-
firmed by figure 6, which evidences a striking performance gap between both methods.
The reconstruction performance achieved through the matrix L is in particular severely
compromised in the sparse regime in which J̃ only has On(n) non-zero entries.

4.3.2. The näıve mean field approach. The ‘Nishimori Bethe-Hessian’ matrix is built
from the Bethe approximation of the Bayes optimal problem formulation. We now show
that a similar approximation procedure could have been performed using a näıve mean
field approximation instead. This leads to a different—much less efficient as we will
see—spectral clustering algorithm. Recalling the procedure of section 3.3.1, we define
the näıve mean field free energy from the probability distribution

pm(s) =
∏
i∈V

1 +misi
2

, (31)

where mi is the average of si over the distribution (31). The associated variational free
energy reads

F̃MF
J̃ ,β

(m) = −
∑
(ij)∈E

βJ̃ ijmimj +
∑
i∈V

∑
si

1 +misi
2

log

(
1 +misi

2

)
.

Computing the gradient of F̃MF
J̃ ,β

(m), one finds that, also in this case, the paramag-

netic point m = 0 is an extreme. Computing the Hessian of the free energy at the
paramagnetic point leads instead to

HMF
β,J̃

= In − βJ̃. (32)

As a consequence, despite the presence of β in the formulation of HMF
β,J̃

, the eigenvectors

of HMF
β,J̃

are simply the eigenvectors of J̃ so that, in this case, β plays no role. Under the

sparse regime, where c = On(1), using the eigenvector associated to the smallest (resp.,

largest) eigenvalues of HMF
β,J̃

(resp., J̃) as an estimator for σ does not allow to make non-

trivial reconstruction as soon as theoretically possible, i.e. whenever βN > βSG > βF: in
this case indeed, the asymptotic spectrum of J̃ is unbounded and no isolated eigenvalue
of HMF

β,J̃
is to be found. This explains the poor performance depicted in figure 6 for small

average degrees c. On the opposite, as already observed in section 3.2, for sufficiently
large degrees c, the näıve mean field approximation essentially yields the same result as
the Bethe approximation.

4.3.3. The ‘spin glass Bethe-Hessian’. We conclude this section by presenting an alter-
native use of the Bethe-Hessian matrix, inspired by the work of [20], that we name here
the spin glass Bethe-Hessian. Algorithm 2 represents an optimal relaxation of the Bayes
optimal solution, capable of performing better than random inference as soon as theo-
retically possible. The parametrization β = βN is not the only possible choice of β able
to reach this threshold. It was indeed shown, under different settings, in [20, 27, 46, 47]
that choosing the temperature β = βSG allows one also to achieve non-trivial clustering
as soon as theoretically possible.
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The value βSG, unlike βN, can be easily estimated from the matrix J̃ solving
cE[th2(βSGJ̃ ijσiσj)] = cE[th2(βSGJ̃ ij)] = 1. However, it was proved in [34] that for com-
munity detection in realistic heterogeneous (thus not Erdős–Rényi-like) graphs, this
may be a quite suboptimal choice in terms of the raw (say, overlap) classification per-
formance. The main difference between the spin glass Bethe-Hessian and the Nishimori
Bethe-Hessian is thus observed when the underlying graph is not of an Erdős–Rényi
type. This can be understood by a closer inspection of equation (28), which shows that
the vector σ is an approximate eigenvector of HβN,J̃

for any underlying degree distri-
bution of the graph. This would not be true in general for any other value of β �= βN,
hence in particular not for βSG.

As a visual confirmation, figure 7 displays the overlap performance and the his-
tograms of the entries of the informative eigenvector of HβN,J̃

versus HβSG,J̃
for a matrix

J̃ generated according to equation (26), considering on the top row graphs with an
underlying power-law degree distribution (this thus goes beyond the assumption of the
present article, yet is typical of real-world graph models [48]) and on the bottom row
Erdős–Rényi graphs. The loss in precision of the spin glass Bethe-Hessian is best under-
stood by comparing the two histograms which evidence that, unlikeHβN,J̃

, the underlying
node classes seen by HβSG,J̃

is much spoiled by the heterogeneous degree distribution.
This is also observed to some extent on Erdős Rényi graphs, but here the performance
achieved by HβSG,J̃

is essentially the same as the one obtained with HβN,J̃
.

The use of HβN,J̃
should thus be privileged when the input weighted graph G may

be far from an Erdős–Rényi random graph generation, such as in the case of a real-
world weighted social graph. Besides, one can envision to extend algorithm 2 beyond
two-class node clustering, as proposed in [43], where the authors show that the proper
parametrization of the Bethe-Hessian matrix (specifically using multiple rather than a
single value for β) brings a decisive advantage on real datasets.

On the opposite, if the input graph is of the Erdős–Rényi type, the performances
of both algorithms are observed to be similar, with a slight computational as numeri-
cal stability advantage for HβSG,J̃

. We nonetheless underline that the estimation of βN

may be of independent interest: if one uses the solution of spectral clustering as the
initialization to an algorithm seeking the actual Bayes optimal solution, then the ini-
tialization provided by HβSG,J̃

would likely be of good quality, although βN would still
remain unknown.

4.4. Application to real data classification

We complete the article by a robustness test of our proposed algorithm under a real-
world machine learning classification problem. Specifically, we consider a sparse (and
thus cost-efficient) version of the problem of correlation clustering such as met in image
classification and show how algorithm 2 can be adopted to accomplish this task with
higher performance than with competing spectral methods of the literature.

Let {zi}i=1,...,n be an n-vector dataset with zi ∈ Rp. These vectors represent dis-
criminating features of some two-class data (say images) to be clustered in a fully
unsupervised manner. In typical modern machine learning, p is of the order of a few
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Figure 7. (First row) Random graphs with an underlying power law degree distri-
bution. (Second row) Erdős Rényi random graphs. (First column) Overlap perfor-
mance obtained exploiting the eigenvector associated to the smallest eigenvalue of
HβN,J̃

(red circles) HβSG,J̃
(blue squares). The entries of J̃ are distributed according

to a Gaussian measure as in equation (26). Averages are taken over ten realizations.
(Second column) Histogram of the entries of the informative eigenvector of HβN,J̃

for βN/βSG ≈ 3.6 in the first plot. (Third column) Histogram of the entries of the
informative eigenvector of HβSG,J̃

for the same configuration as the second plot. For
all plots, the graphs have n = 30 000 nodes and expected average degree c = 10.

thousands for images and a few hundreds for natural language text representations, and
it is not rare to try and classify up to millions of data vectors z i.

The most elementary unsupervised machine learning classification approach consists
in running the popular k-means algorithm in the ambient p-dimensional feature space.
K -means is however known to fail for large p [49] and is ruled out as soon as p exceeds
the order of a few tens. A classical workaround is to embed the feature vectors z i in a
lower dimensional space on which to run k -means clustering. The most popular embed-
ding exploits a spectral approach: one starts by defining a kernel matrix K({z}) ∈ Rn×n,
the entry Kij({z}) of which evaluates some affinity metric between z i and z j; running
a principal component analysis on K({z}), one then extracts a collection of eigenvec-
tors x 1, . . . , x 	 for some 	 of the order of the presumed number of classes; the rows
x̃1, . . . , x̃n ∈ R	 of the resulting ‘tall’ matrix X = [x1, . . . , x	] ∈ Rn×	 form the embedding
of the original features from Rp into R	 over which k -means clustering is finally run.
A popular affinity function is merely the correlation Kij({z}) = zTi zj , which we shall
consider here9.

9 Other choices exist, such as the more popular heat kernel Kij ({z}) = exp(−‖z i − z j‖2/2ν2) for some ν > 0.
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For large dimensional datasets though (i.e. for p,n beyond a few thousands), the
O(pn2) cost of building K({z}) added to the (at least) O(n2) cost of the principal
component analysis step makes spectral clustering hardly achievable on a modern home
computer. To drastically decrease the computational complexity one may proceed to a
two-level sparsification as recently proposed in [50, 51]: by randomly discarding elements
of the p-dimensional features z i and by randomly dropping a number of evaluations of
the correlations zTi zj. This operation of course impedes the clustering performance,
but, as surprisingly proved in [50, 51] under a ‘still rather dense graph’ regime, the
performance loss is negligible for a wide range of sparsity levels. To this end, let S ∈
{0, 1}n×p and M ∈ {0, 1}n×n (symmetric) be Bernoulli masks with parameters

√
κ/p and

c/n,10 respectively. The resulting sparsified kernel matrix then becomes

J̃ = K({x̃}) ◦M , where x̃i,l = xiSi,l. (33)

i.e. each entry of each of the feature vectors z i is kept only with probability
√

κ/p, while
each measurement Kij({z̃}) is only performed with probability c/n. The computational

complexity to build J̃ is thus scaled down to O(κcn), i.e. to linear time complexity with
respect to the size of the original dataset (which is the best one can hope for without
completely dropping part some of the data z i).

As a major consequence of the sparsification procedure, the non-zero entries of J̃ can
be considered asymptotically independent due to the asymptotic absence of short loops
in the underlying sparse Erdős–Rényi graph. As a result, equation (26) provides a good

approximation for the generative model of J̃ and for a two-class correlation clustering
problem, algorithm 2 can be efficiently used on the matrix J̃ .

We thus practically tested algorithm 2 against the näıve mean field approach which
in this setting happens to coincide with the algorithm proposed in [50] when applied to
the z̃i vectors, and against the weighted Laplacian matrix approach. As a telling modern
data classification context, we chose to cluster two classes of high-resolution extremely
realistic images randomly produced by generative adversarial networks (the now quite
popular GANs) [16]; the interest of using GAN images rather than real images lies in
that GAN images can be produced ‘on-the-fly’ and in arbitrary numbers.

Specifically, we considered n = 40 000 images divided into two groups of equal size,
representing collie dogs and tabby cats. A representative example of the input images
generated by the GAN is given in figure 8. For each of these images we extracted dis-
criminating features using an off-the-shelf convolutional neural network (VGG) which
produces p = 512-dimensional feature vectors z i.

11 We then measured the overlap per-
formance as a function of the average node degree c of the ensuing graph and for different
values of κ. The results are reported in figure 8 which strikingly evidences that algorithm
2 can achieve almost perfect reconstruction already for c = 5 when the feature vectors
z i are not sparsified (κ = p): so, in clearer terms, out of the 40k × 40k = 1.6 · 109 corre-
lations needed to evaluate the full K({z}) matrix, only ≈6× 40k = 2.4 · 105 is enough
to achieve almost optimal performance, thus corresponding to a striking 104-fold gain
in complexity for a rather marginal performance loss!

10 The choice of c is not a coincidence: M will enforce an average node degree of c to the resulting graph.
11 The p = 512 figure is on the low-hand of typical image vector representations: this number today may rise to 4k or even to 20k
when much more than two classes of images are to be classified.
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Figure 8. (Left) Example of random generations of GAN images representing
collie dogs and tabby cats used for the experiment. (Middle and right) Over-
lap classification performance of 40 000 GAN images, as a function of the expected
average underlying graph degree c. Here, we consider Kij({x}) = 1

px
T
i xj and we

take either κ = p: all features of the images are kept, or κ = 20: on average, only√
κ/p features (out of the original p = 512) are used. Simulation performances are

themselves averaged over ten realizations.

Figure 8 also reports that the performance of the näıve mean-field and weighted
Laplacian matrix approaches, currently the legacy methods in the literature, severely
suffer in the low-c end. These observations perfectly adhere with the conclusions drawn
so far in the article and thus turns our up-to-here formal Nishimori-optimized algorithm
into a concrete powerful method for cost-efficient classification of large dimensional
datasets.

5. Conclusion

The central contribution of the article is of a theoretical nature and aims at introduc-
ing an elegant explicit relation between the Bethe-Hessian matrix and the Nishimori
temperature. Yet, beyond this statistical physics endeavour, which will surely find fur-
ther independent theoretical interests, the result finds fundamental direct applications
to Bayesian statistical inference; this is strikingly evidenced by the image clustering
application devised in section 4.4. Specifically, one may anticipate an important impact
in more involved applications than those considered in this article, such as in restricted
Boltzmann machines (RBM) whose goal is to learn a generative model from a set of
examples [52]: the Bethe approximation has recently been adopted to study the RBM
from a Bayesian perspective [53] so that one may envision that the explicit relation
between the Bethe free energy and the Bayes optimal (Nishimori) condition presented
in this article would lead to a better understanding and improvement of state-of-the-art
algorithms. Similarly, the Bethe and TAP approximations have recently been exploited
to devise efficient spectral algorithms for phase retrieval, based on statistical physics
intuitions similar to the ones detailed in this article [35, 54, 55]. The extension of our
results to this more involved setting is a promising line of exploration.
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On the side of complexity reduction, exploiting high levels of sparsification of data
measurements, we showed that our proposed algorithm is capable of accomplishing
high quality unsupervised classification on very large datasets. This result is all the
more fundamental that future machine learning data treatment will call for increasingly
larger datasets which cannot be possibly manually labeled and for which unsupervised
(or possibly semi-supervised) approaches must be adopted12. As a downside though,
the generative model we considered for the data affinity (kernel) matrix takes the
strong assumption that its entries are drawn from the same probability distribution
and only the average (and not the variance, or the distribution itself) embeds infor-
mation on the node labels. This setting might be too simplistic on generic real data
that would require more realistic probability distributions for the generative model of
the kernel matrix, considering, for instance, asymmetrical [20], multi-cluster [27] or
multi-dimensional distributions.

Possibly most importantly, we worked here under the assumptions that the edges
maintained in the sparsified graph are drawn independently at random. When dealing
with actual kernel matrices, this cost-efficient measure is quite suboptimal: in [56], a
more efficient sparsification procedure is used which maintains the entries of K({z}) of
largest amplitude. In [56], this comes at the cost of computing all the entries of K({z})
but, surely, a more efficient nearest neighbors-type procedure could be implemented as
a good performance-complexity compromise [57]. Yet, in this setting, although stronger
sparsity levels can surely be achieved for the same performance, the key independence
property of the entries of K({z}) which we exploited here can no longer be assumed,
so that one needs to carefully handle the hard problem of dependencies. There lies the
main objectives of our follow-up investigations.
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Appendix A. An explicit expression for the matrix F(g)

We here provide one of the possible explicit expressions that the matrix F (g) can have.
In particular, this is the expression used in our simulations. Let us recall the definition
of the matrix F (g).

Let g ∈ R
2|E| be an eigenvector of the matrix B with weight vector ω ∈ R2|E|. Let

λ be the eigenvalue corresponding to g , with |λ| � 1. The matrix F (g) is any matrix

12 A configuration which, in passing, even modern so-called deep neural networks struggle to correctly handle.
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satisfying the relation

[F (g)ψ(g)]i =
∑
j∈∂i

ω3
ijgij, (34)

where we recall that

ψi(g) =
∑
j∈∂i

ωijgij.

A possible definition of the matrix F (g) is to consider a diagonal matrix, satisfying

Fij(g) = δij

∑
j∈∂iω

3
ijgij∑

j∈∂iωijgij
.

This matrix depends however explicitly on g . We here describe an alternative expression
in which the dependence on g is manifested only through λ. More explicitly, the following
relation holds

λgij = (Bg)ij = ψj(g)− ωijgji.

Considering the same equation for gji, we can easily write the following system(
λ ωij

ωij λ

)(
gij
gji

)
=

(
ψj(g)
ψi(g)

)
.

For |λ| � 1 and |ωij| < 1, the matrix on the left hand-side can be inverted, leading to
the following relation

gij =
λψj − ωijψi

λ2 − ω2
ij

. (35)

Plugging equation (35) into equation (34), the following expression of F (g) ≡ F (λ) can
be obtained:

Fij(λ) = −δij
∑
k∈∂i

ω4
ij

λ2 − ω2
ij

+
λω3

ij

λ2 − ω2
ij

.

This expression of the matrix F (g) ≡ F (λ) is the one considered in our simulations.

Appendix B. Algorithm implementation

In this appendix we discuss more extensively some details concerning a practical
and efficient implementation of algorithm 2. For reference, our codes are available
at github.com/lorenzodallamico/NishimoriBetheHessian. We now proceed to a detailed
analysis of each step of algorithm 2.
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The first step of algorithm 2 consists in the following operation:

∀ (ij) ∈ E : J̃ ij = J̃ ij −
1

2|E|1
T
n J̃1n.

The rationale of this operation is to consider an input matrix J̃ as close as possible to a
realization of the distribution of equation (26) that satisfy, for two classes of equal size13,

the condition E[J̃ ij ] = 0. By shifting the empirical average of J̃ ij to zero for the input
of algorithm 2, we are willing to reproduce this property. Note that only the non-zero
entries of J̃ are shifted , while for all the (ij) /∈ E the J̃ ij = 0.

Once a proper input matrix J̃ is obtained, the value of βSG and then the smallest
eigenvalue of HβSG,J̃

are computed: if the latter is positive, one cannot proceed any

further to the computation of β̂N and the algorithm is stopped. In the spirit of correlation
clustering , discussed in section 4, the condition γmin(HβSG,J̃

) < 0 imposes the minimal

average degree to perform non-trivial reconstruction14.
At this point, we get to the core of algorithm 2 that consists in the computation of

β̂N. The first thing to do is to determine if G is a signed graph (with only ±J 0 entries).
If this is the case, the signed representation of Hβ,J̃ introduced in equation (30) should
be adopted. We consider first this easier case.

For notation convenience, we introduce r = [th(βJ0)]
−1 (r � 1) and define Hr,J̃ =

(r2 − 1)In +D − rJ̃ . Furthermore, let x r be the eigenvector of Hr,J̃ associated to its
smallest eigenvalues. We look for r so that

γmin

(
Hr,J̃

)
= 0.

In order to do so, consider rt > r̂N = [th(β̂NJ0)]
−1. The following relation is true for

any r,

γmin(Hr,J̃) � xT
rt
Hr,J̃xrt = (r2 − 1) + drt − rjrt := frt(r), (36)

where drt = xT
rt
Dxrt and jrt = xT

rt
J̃xrt. Defining rt+1 as the solution to frt(rt+1) = 0, one

immediately obtains from equation (36) that γmin(Hrt+1,J̃
) < 0. One can show (appendix

F in [47]) that |rt+1 − r̂N| < |rt − r̂N|, hence, that at each iteration the value of rt
approaches r̂N. In practice, convergence is typically achieved in less than ten itera-
tions. A good initialization is r0 = [th(βSGJ0)]

−1 > r̂N (recall that βN > βSG), ensuring
the algorithm convergence.

We now consider graphs with non-binary weights that introduce additional complica-
tions. The entries ofHβ,J̃ grow exponentially, with β, making the eigenvalue computation
potentially unstable. In order to work with a matrix with entries of order 1, we introduce

13 Note that the inference problem of equation (27) does not make any assumption on the respective sizes of the classes that can
therefore be arbitrary. In the case of asymmetric classes, however, the term E[Jij ] �= 0 depends on the sizes of the two classes. In
order to do the proper shift, one would then need additional information on the class sizes.

14 The detectability condition we recall to imposed by βN > βSG. While βN is independent of the average degree, βSG is a decreasing
function of the average degree, as it can be easily obtained from its definition in equation (8).

https://doi.org/10.1088/1742-5468/ac21d3 32

https://doi.org/10.1088/1742-5468/ac21d3


J.S
tat.

M
ech.

(2021)
093405

Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs

the following weighted regularized Laplacian [58]:

Lβ,J̃ = In − Λ
−1/2

β,J̃
W̃ β,J̃Λ

−1/2

β,J̃
, (37)

where (
W̃ β,J̃

)
ij
=

th(βJ̃ ij)

1− th2(βJ̃ ij)
;

(
Λβ,J̃

)
ij
= δij

∑
k∈∂i

th2(βJ̃ ik)

1− th2(βJ̃ ik)

It is straightforward to see that if Hβ̂N,J̃
x = 0, then Lβ̂N,J̃

v = 0, where v = Λ
−1/2

β,J̃
x. The

matrix Lβ,J̃ hence allows to compute β̂N and x in a more efficient way, since it is more

suited to eigenvalue computations. We can define in this case fβt(β) = vT
t Lβ,J̃vt and

update βt+1 as the solution to fβt(βt+1) = 0.
In any case, for very large values of βN (hence for very easy clustering problems)

numerical instabilities may occur. In order to avoid this problem, we allow a ‘maximal
value’ βth for β̂N beyond which the algorithm is stopped. The main reason that allows
us to do so is that if βN > βth we are practically in an easy detection regime, for which
the knowledge of the exact value of βN is less relevant and can be otherwise achieved
first estimating the labels σ̂ (the estimation of which will be very accurate) and then

solving E[th(βNJ̃ ijσiσj)] = E[th2(βNJ̃ ij)]. We empirically observed that a good stopping
criterion is obtained imposing βth ∼

√
cβSG.
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[41] Mézard M, Parisi G and Virasoro M A 1987 Spin glass theory and beyond: An Introduction to the Replica Method

and Its Applications vol 9 (Singapore: World Scientific)
[42] Saad Y 1992 Numerical Methods for Large Eigenvalue Problems (Manchester: Manchester University Press)
[43] Dall’Amico L, Couillet R and Tremblay N 2020 A unified framework for spectral clustering in sparse graphs

(arXiv:2003.09198)
[44] Von Luxburg U 2007 A tutorial on spectral clustering Stat. Comput. 17 395–416
[45] Kunegis J, Schmidt S, Lommatzsch A, Lerner J, De Luca E W and Albayrak S 2010 Spectral analysis of signed

graphs for clustering, prediction and visualization Proc. 2010 SIAM Int. Conf. Data Mining (Philadelphia,
PA: SIAM) pp 559–70
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