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ABSTRACT

Categorization, i.e. the ability to assign the same labels to objects sharing
similar properties, is one of the main task in machine learning. In recent
times, the ever increasing amount of data at our disposal gives us unprece-
dented possibilities to devise sophisticated and statistically signi�cant cate-
gorization methods but it also requires a considerable e�ort in designing scal-
able and e�cient algorithms, capable to properly deal with these datasets.

Spectral clustering (SC) is one of the most popular techniques to categorize
the items of a dataset that can be represented as a graph. This is a class of
unsupervised algorithms in which the “best” partition does not require the
help of additional information to be determined and is instead obtained by
exploiting the dependencies between the dataset’s items. In SC algorithms,
the information concerning the class structure of the input dataset is de-
termined by the eigenvectors of a suited matrix. The intuitions and results
justifying SC are at the crossroads between several �elds such as statistics,
random matrix theory, computer science, network science, signal processing,
statistical physics and have so far mostly been treated independently.

In this manuscript, we study the challenging (but relevant) sparse setting,
in which only few entries of the matrix representation of the input dataset
are non-zero. We focus in particular on the applications of SC for community
detection (in both static and dynamical graphs) and for the sparsi�cation
of kernel matrices for time-e�cient clustering of high dimensional vectors.
We build on the recent advances in statistical physics for SC to propose im-
proved algorithms that provably outperform the existing methods for both
synthetic as well as real clustering tasks. Moreover, we propose a simple
framework that gives a uni�ed view of some of the most in�uential state-
of-the-art methods for SC. The existing algorithms from the literature can
often be considered as corner cases of our proposed methods that constitute
instead an “optimum” capable of self-adapting to the hardness of the cluster-
ing problem. We further detail extensively how to e�ciently implement our
proposed algorithms for practical SC tasks.
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RESUMÉ

La catégorisation, c’est-à-dire la capacité à attribuer les mêmes étiquettes
à des objets partageant des propriétés similaires, est l’une des principales
tâches de l’apprentissage automatique. Ces dernières années, la quantité
toujours croissante de données à notre disposition nous o�re la possibilité
sans précédent de concevoir des méthodes de catégorisation sophistiquées
et statistiquement signi�catives, mais elle exige également un e�ort con-
sidérable pour concevoir des algorithmes évolutifs et e�caces, capables de
traiter correctement ces ensembles de données. Le clustering spectral (SC) est
l’une des techniques les plus populaires pour catégoriser les éléments d’un
ensemble de données qui peut être représenté sous la forme d’un graphe. Il
s’agit d’une classe d’algorithmes non supervisés pour lesquels la “meilleure”
partition ne nécessite pas l’aide d’informations supplémentaires et est plutôt
obtenue en exploitant les dépendances entre les éléments du jeu de données.
Dans les algorithmes SC, l’information concernant la structure des données
d’entrée est obtenue grâce aux vecteurs propres d’une matrice appropriée.
Les intuitions et les résultats justi�ant le SC sont à la croisée des chemins de
plusieurs domaines tels que les statistiques, la théorie des matrices aléatoires,
l’informatique, la science des réseaux, le traitement du signal, la physique
statistique et ont jusqu’à présent été traités de manière indépendante.

Dans ce manuscrit, nous étudions le cadre di�cile (mais pertinent) des ma-
trices parcimonieuses, dans lesquelles seules quelques entrées de la représen-
tation matricielle sont di�érentes de zéro. Nous nous concentrons en parti-
culier sur les applications du SC pour la détection de communautés (à la
fois statiques et dynamiques) et pour la sparsi�cation des matrices à noyau
pour le clustering de vecteurs en grande dimension. Nous nous appuyons
pour cela sur les avancées récentes de la physique statistique pour le SC
a�n de proposer des algorithmes améliorés qui surpassent, preuve à l’appui,
les méthodes existantes pour les tâches de classi�cation autant sur des don-
nées synthétiques que sur des données réelles. De plus, nous proposons un
cadre simple qui donne une vue uni�ée de certaines des méthodes les plus
in�uentes qui forment l’état de l’art pour le SC. Les algorithmes existants de
la littérature peuvent souvent être considérés comme des cas extrêmes des
méthodes que nous proposons qui constituent plutôt un “optimum” capa-
ble de s’adapter à la di�culté du problème de classi�cation. Nous détaillons
également une implémentation e�cace des algorithmes que nous proposons
pour les tâches pratiques de SC.

vii





CONTENTS

Abstract vi
Resumé viii

introduction 1

I technical tools 11
1 an introduction to networks and graphs 13

1.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 From networks to graphs . . . . . . . . . . . . . . . . . . . . 18
1.3 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 the ising model on sparse graphs 29
2.1 The Boltzmann distribution . . . . . . . . . . . . . . . . . . . 29
2.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Tree-like approximations . . . . . . . . . . . . . . . . . . . . 35

3 spectral properties of the non-backtracking

and bethe-hessian matrices 43
3.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 The non-backtracking matrix . . . . . . . . . . . . . . . . . . 45
3.3 The Bethe-Hessian matrix . . . . . . . . . . . . . . . . . . . 53
3.4 Relations with the Ising model . . . . . . . . . . . . . . . . . 56

II community detection 59
4 short overview of spectral clustering for

community detection 61
4.1 Community detection as an optimization problem . . . . . . 62
4.2 Inference in the DCSBM . . . . . . . . . . . . . . . . . . . . 64
4.3 Spectral clustering: related works . . . . . . . . . . . . . . . 71
4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 optimal bethe-hessian for community detec-

tion 81
5.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Supporting arguments . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Performance comparison . . . . . . . . . . . . . . . . . . . . 96
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 optimal laplacian regularization for spec-

tral clustering 101
6.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Supporting arguments . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 algorithmic implementation 111
7.1 Implementation details . . . . . . . . . . . . . . . . . . . . . 112

ix



7.2 Numerical results on real graphs . . . . . . . . . . . . . . . . 122
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8 a unified framework for spectral cluster-

ing 127
8.1 Adjacency-based algorithms . . . . . . . . . . . . . . . . . . 128
8.2 Laplacian-based algorithms . . . . . . . . . . . . . . . . . . . 131
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

III generalizations 135
9 spectral clustering in dynamical graphs 137

9.1 Community detection in dynamical graphs . . . . . . . . . . 138
9.2 Detectability threshold for �nite T . . . . . . . . . . . . . . . 144
9.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.4 Algorithm and performance comparison . . . . . . . . . . . 154
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10 nishimori meets bethe: sparsification of ker-

nel spectral clustering 159
10.1 Correlation clustering . . . . . . . . . . . . . . . . . . . . . . 160
10.2 Basic properties of the random bond Ising model . . . . . . . 166
10.3 A relation between βN and the Bethe free energy . . . . . . 169
10.4 Algorithm and performance comparison . . . . . . . . . . . 178
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

conclusion 183

bibliography 191

resumé substantiel 207

IV appendices 215
a dcsbm percolation threshold 217
b optimal bethe-hessian 221

b.1 De�nition of ζ on the sparse DCSBM . . . . . . . . . . . . . 221
b.2 The eigenvalues of T . . . . . . . . . . . . . . . . . . . . . . 224

c spectral clustering in dynamical graphs 225
c.1 Detectability threshold at �nite T . . . . . . . . . . . . . . . 225
c.2 Spectrum of Bξ,h . . . . . . . . . . . . . . . . . . . . . . . . . 227
c.3 Performance comparison . . . . . . . . . . . . . . . . . . . . 232

x



ACRONYMS

SC spectral clustering

CD community detection

DCD dynamical community detection

RMT random matrix theory

ER Erdős-Rényi

GW Galton-Watson

SBM stochastic block model

DSBM dynamical stochastic block model

DCSBM degree corrected stochastic block model

DDCSBM dynamical degree corrected stochastic block model

NMF naïve mean �eld

BP belief propagation

RBIM random bond Ising model

xi



SYMBOLS

Miscellaneous

• The cardinality of set A is denoted with |A|.

• The empty set is denoted with ∅.

• Ix is the indicator function equal to 1 if the condition x is veri�ed and
is 0 otherwise.

• 1n is the all-ones vector of size n.

• When two quantities an, bn admit a �nite limit limn→∞
an
bn

= c, inde-
pendent of n, then we write an ∼ bn, or, equivalently, an = On(bn).
Conversely, if limn→∞

an
bn

= 0, then we write an = on(bn).

• δij is the Kronecker symbol, equal to 1 is i = j and 0 otherwise.

Linear algebra

• Matrices are denoted in standard font capital letters (M). The trans-
pose of a matrix is MT . The i-th row and column of a matrix M are
denoted with Mi,• and M•,i, respectively. Mij corresponds to the entry
of M at row i and column j.

• Column vectors are denoted in small-case bold font (v). Row vectors
are denoted with vT . Vectors elements are denoted as vi.

• Scalars are denoted in small-case standard font (a, vi).

• In is the diagonal identity matrix of size n.

• M = diag(v) is the diagonal degree matrix so that Mij = δijvi.

• tr(·) is the trace of a matrix.

• det(·) is the determinant of a matrix.

• λi(·) indicates a generic eigenvalue of a matrix.

• For Hermitian matrices, λ↑i (·) (resp. λ↓i (·)) is the i-th smallest (resp.
largest) eigenvalue.

• For non Hermitian matrices λ↑R,i(·) (resp. λ↓R,i(·)) is the i-th eigen-

value with smallest (res. largest) real part. Similarly, λ
↑|·|
i (·) (resp. λ

↓|·|
i (·))

is the i-th smallest (resp. largest) eigenvalue in modulus.

• Λ(M) is the set of all the eigenvalues of M.

xii



IN TRODUCT ION

categorization and learning
Categorization, i.e. the ability to divide objects into groups, is deeply rooted
in human intelligence and takes a prominent role in learning. One could even
say that the criterion followed to categorize objects precisely provides a def-
inition of the abstract concept related to the categories themselves [Hul20].

Whether consciously or not, human intelligence allows each one of us to
perform two basic operations, sketched in the toy representation of Figure 1,
to accomplish the task of categorizing objects. The �rst one requires to iden-
tify the informative features of the input data, i.e. those that are necessary
and su�cient to attribute a category label to the input data. For example, From humans...

considering apples and pears, discriminative features may be the taste, the
texture, while the weight of the fruit would generally be non-informative.
This step is called feature extraction and provides a representation of the ob-
ject in a parametric space, so that similar objects in the real world (the apples
or pears) should correspond to nearby points in the parametric space.

The second step consists in attributing a label to the input, according to its
position in the feature space. Depending on the problem considered, this can
be done in two main ways. One is classi�cation: the task is assigning a single
given item to one of the possible available groups; the other is clustering: in
this case, the goal is to divide into groups several input items, according to
their proximity as shown in the right plot of Figure 1.

Machine learning aims at reproducing with computers the human ability
of �nding patterns in data [Bis06]. Machines have a decisive disadvantage
with respect to humans in accomplishing complex tasks like pattern recog-

Figure 1: A toy sketch of the steps of feature extraction and clustering. The blue
arrows indicate the feature extraction step, while the black circles group
together nearby points in the feature space.
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2 introduction

nition as they are bounded to a simple representation of inputs in the form
of arrays of bits and do not have a complex experience of reality that the
�ve senses give to humans. Nevertheless the steps of feature extraction and...to machines

successive clustering or classi�cation are the fundamental building blocks of
several machine learning algorithms [MRT18].

Classi�cation is typically achieved with supervised learning, which is a
very intuitive (in principle) way of intending learning and is nowadays most
commonly deployed. A large dataset of items equipped with their ground-
truth labels is used to train an algorithm to generate a rule predicting the
labels. Once the training has been completed, the rule can be used to clas-
sify newly submitted inputs. To this class of algorithms belong neural net-Supervised learning

works that were born with the aim of reproducing the learning process that
happens in a human brain [MP43] and constitute nowadays the state-of-the-
art in most �elds in terms of performance. This approach has however its
drawbacks: the learning step may be computationally expensive, while the
creation of a suited training set may be time and storage consuming.

Related to the problem of clustering instead, unsupervised learning tech-
niques are generally preferred in cases where the machine is not provided
with any additional information beyond the data to be clustered. The lackUnsupervised

learning of “external aid” of course hampers the performances of unsupervised learn-
ing as compared to supervised learning, but the inconveniences introduced
by the learning step are here bypassed. Unsupervised learning algorithms
in fact pro�t from the ability of machines to perform hard computing tasks
that is precisely where they overcome humans, being capable of processing
enormous amount of data in a short time. The advantage of dealing with
large datasets is indeed to exploit statistically relevant relations between its
elements and to �nd patterns with no additional external information.

Even though supervised learning algorithms are nowadays very popular
due to their ability to obtain super-human performances, serious concerns
should be raised about their requirements of several labelled samples and
of computational intensive training [Usa+19]. The ever increasing size of in-
put datasets, in fact, cannot (and probably should not) be accompanied by
an equally fast growth of computational e�ort. In this perspective, unsuper-
vised techniques play a fundamental role in modern machine learning.

spectral clustering

the building blocks
Clustering has several applications in di�erent �elds and is, generally speak-
ing, an ill-de�ned problem [XW05; RM05; Sch07; WK18]. One of the most
popular classes of clustering algorithms, which is at the core of this manuscript,
is spectral clustering (SC) whose building blocks are described as follows.
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Figure 2: Left: a graph with two communities, highlighted with a di�erent colour
code. Right: a 2 dimensional node embedding of the graph on the left.

The �rst step of SC consists in providing the input dataset with a graph
representation encoding the pairwise relations between its items. A more
extensive introduction to graphs is dedicated in Chapter 1. For visualization
purposes, a graph with two clusters is shown in the left plot1 of Figure 2. Graph representation

The following step of SC is then the feature extraction, which consists in
mapping each item (or node in graph language) into a small dimensional
vector. This is also known as node embedding [CZC18; NS13], whose repre-
sentation is given in the right plot of Figure 2 that should be compared to Feature extraction

Figure 1. An appropriate embedding is such that “similar” nodes should end
up close in the embedded space. In SC, the nodes are embedded exploiting
the eigenvectors of a suited graph matrix representation. One of the main
advantages of SC with respect to other embedding methods [GF18; CZC18;
NS13] relies in its solid theoretical foundations and explainability.

The �nal step consists in performing a low dimensional clustering on the
input embedded nodes, i.e. in determining boundaries in the embedded space
to separate the points. Several algorithms exist to accomplish this task and Clustering

can be divided in two groups: those in which partitions are attributed solv-
ing an optimization problem such as k-means [Mac+67], k-medoids [KR09],
expectation maximization [DLR77]; those in which boundaries between clus-
ters are drawn where the density of points is minimal, as shown in Figure 3
such as DBSCAN [Est+96] and OPTICS [Ank+99].

The main steps of a typical SC algorithm are summarized in Algorithm 1.
Here, it has to be noted that the dimension of the embedding is set to k, the
number of clusters. This is a customary choice, but not a stringent require-
ment. In fact, on a more general level, Algorithm 1 is written for pedagogical
reasons and not all SC algorithms follow exactly its structure.

In order to justify why Algorithm 1 can be used for clustering, we provide
an example for k = 2 clusters, based on the work of [Fie73] that can be
considered the �rst work on SC. The mathematical and intuitive description

1 The graph plots in this manuscript are obtained using the graph-tool [Pei14b] and
NetworkX [HSS08] Python packages.
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Figure 3: Three clouds of points in a 2-dimensional space. The colours indicate
the ground-truth labels. The histograms represent the densities of points
along the two directions. The dash-dotted black lines correspond to the
minima of the histograms and allow one to cluster the input data into
k = 3 groups using a DBSCAN-type algorithm.

is willingly left to a low level. More precise results and considerations are at
the core of the main body of the manuscript.

A representation of

an A: a white dot

indicates Aij = 0,
while a coloured dot

Aij = 1.

Let us consider a problem in which the relations between items are en-
coded by binary variables Aij ∈ {0, 1} with Aij = 0 indicating that i and
j do not interact and, on the opposite Aij = 1 that they do. This is the
simplest possible setting to describe pairwise interactions and the matrix
A ∈ {0, 1}n×n is the adjacency matrix of an unweighted graph, that will be
more formally de�ned in Chapter 1. Letting D = diag(A1n) be the diago-
nal degree matrix, where 1n is the all-ones vector of size n, we introduce the
graph Laplacian matrix L = D− A. For any vector f ∈ Rn we can write

f T L f =
n

∑
i,j=1

fi
(
diδij − Aij

)
f j =

n

∑
i=1

f 2
i di −

n

∑
i,j=1

Aij fi f j

=
n

∑
i,j=1

Aij
(

f 2
i − fi f j

)
=

1
2

n

∑
i,j=1

Aij
(

fi − f j
)2 , (1)

where δij denotes the Kronecker delta. Any pair of interacting nodes (Aij = 1)
contributes to this sum with a weight which increases with the distance be-
tween fi and f j. Now, supposing f is a node embedding vector, ( fi − f j)

2

should be small if i and j are “similar” and large otherwise. Consequently
f T L f can be seen as an embedding cost function. In fact, assuming that
nodes are more likely to interact if they are similar, to large values of f T L f
correspond vectors in which interacting nodes have very di�erent embed-
dings. Minimizing f T L f under the constraint f ⊥ 1n (which is a trivial
embedding) allows one to map “similar” nodes to “nearby” points. Imposing
the normalization ‖ f‖2 = 1, we de�ne the embedding vector f ∗ as
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Algorithm 1 : Spectral clustering
Input : Dataset with n items, k number of clusters
Output : ` ∈ {1, . . . , k}n label assignment

1 begin

2 De�ne suited matrix representation of the dataset M ∈ Rn×n;
3 Stack the k largest (or smallest) eigenvalues of M in the columns

of X ∈ Rn×k (Feature extraction);
4 Estimate community labels ` with a small dimensional clustering

algorithm performed on the rows of X (Clustering) ;
5 return `

6 end

f ∗ = arg min
f∈Rn, f⊥1n

f T L f .

Since 1n is the eigenvector of L associated to its smallest eigenvalue (this is
easily seen from Equation (1)), f ∗ is the eigenvector associated to the second
smallest eigenvalue of L, known as Fiedler eigenvector, and it justi�es SC in
the form of Algorithm 1 for the choice M = L. Following similar arguments,
some classical SC algorithms are based on the adoption of the normalized

Laplacianmatrices Lsym = D−1/2AD−1/2, Lrw = D−1A and the adjacency
matrix A [VL07; LR+15], with possible extensions also to the weighted case
in which A ∈ {0, 1}n×n is replaced by W ∈ Rn×n.

a bird’s eye view on sc
The �eld of SC is very interdisciplinary and, in order to describe at best where
the work presented in this manuscript locates in the existing literature, a
wide perspective on the problem must be kept.

First of all, as we mentioned earlier, one of the main interests of SC lies
in its solid theoretical foundation. Powerful tools based on random matrix

theory (RMT) allow one to provide precise results on the performances and
applicability of Algorithm 1. Typically, however, two important hypotheses
have to be formulated: the size n of the matrix M must go to in�nity and
the number of non-zero entries (say m) must go to in�nity faster than n The computational

complexity of SC[CBG+16; AC17, for instance]. While the former simply consists in consider-
ing the very interesting setting of big datasets, from a practical perspective,
the latter hypothesis raises a problem from the point of view of the scala-
bility of Algorithm 1. In fact, the numerical cost of computing the k leading
eigenvectors of a matrix with m non-zero entries grows as O(mk2) [Saa92].
Let us consider the case m = n2, i.e. all the entries of the matrix M are
non-zero, for a small value of k such as k = 2. The complexity is in this case
O(n2k2) which makes the cost of Algorithm 1 prohibitive for a standard
laptop when n > 105 approximately.
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The problem of the computational complexity of SC is well known in the
literature and led to several sampling strategies that aim at improving the
e�ciency of Algorithm 1 [TL20]. The simplest procedure simply consists
in making the matrix M sparser, setting some of its entries to zero. This
improves signi�cantly the e�ciency of Algorithm 1. Consider in fact a sam-
pling strategy that keeps on average 10 non-zero entries in each row of M:
the computational limit of the laptop considered earlier is now obtained for
n = 109 which allows one to deal with datasets of considerable sizes.

This sampling procedure, however, comes at a cost. Besides the fact that
by “throwing away” some measurements (hence information), the outputSC and sparsity

of Algorithm 1 may naturally be less accurate, sparsity has long known to
be the “Achilles’ hill” of SC. In fact, for great levels of sparsi�cation, while
there exist algorithms di�erent from SC that can �nd reasonable clusters,
Algorithm 1 typically performs very poorly for the standard choices of the
matrix M, such as the graph Laplacian L = D− A introduced earlier.

The problem of sparsity is not only related to sampling procedures. A
natural application of SC is to perform node embeddings on social networks
in order to divide the nodes into communities. Real social networks are often
sparse by construction [Bar13] (each node interacts typically with a very
small fraction of the total) and, as a consequence, Algorithm 1 may perform
poorly in practical community detection (CD) tasks. All in all, these are severe
limitations of SC that make it unsuited for a large set of inputs (such as the
aforementioned social networks) and that allow for good performances only
at the price of a great computational cost.

A breakthrough work on SC in sparse graphs was however provided in
[Krz+13], “redeeming” the use of SC techniques of very sparse graphs, specif-
ically in the context of CD. The work of [Krz+13], together with [Dec+11;
SKZ14], is based on very deep but non-rigorous intuitions and methods bor-
rowed from statistical physics that renewed the interest of the scienti�c com-
munity in the topic and led, in the following years, to formalize most of theirStatistical physics

gave powerful

insights on SC in

sparse graphs

results in a mathematically rigorous way. As far as SC is concerned (and in
particular CD), the main contribution of [Krz+13; SKZ14] consists in propos-
ing “new” matrices2 M for Algorithm 1 to replace the “classical” choices
when performing clustering in sparse graphs.

The Bethe-Hessian matrix plays a fundamental role in this manuscript,
being the choice for M in all our proposed algorithms. In the unweighted
case, its de�nition reads, for a scalar r ≥ 1

The Bethe-Hessian

matrix
Hr = (r2 − 1)In + D− rA,

where In is the identity matrix of size n. We now attempt to describe in
simple terms the fundamental role played by the parameter r, adopting also
in this case a willingly hand-waving tone and leaving rigorous details to the
following chapters.

2 The non-backtracking matrix of [Krz+13] and the Bethe-Hessian of [SKZ14] were known
already, but were not used for CD.
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The “statistical-physics” approach is deeply related to Bayesian inference
in which, given the observation of A, each label con�guration ` = {1, . . . , k}n

has a probability to be the “good” label assignment given by

P(`|A) =
1
Z

exp
{
−ath

(
1
r

)
H(`)

}
,

where H(`) is a cost function of the label assignment and Z a normaliza-
tion constant. For k = 2 classes,3 the eigenvector associated to the second
smallest eigenvalue of Hr can be used to obtain an approximation of the vec-
tor of marginal node probabilities {Pi(`i)}i=1,...,n. It is now fundamental to
understand the role played by r. For r → 1, only the con�guration minimiz-
ing the cost functionH(`) matters and the problem of computing the node
marginals simply reduces to �nding the optimum ofH(`). For larger values
of r, instead, each con�guration ` contributes to the function P(`|A) and
prevents the marginals from being potentially determined by meaningless
local minima of H(`) introduced by noise: the higher the noise, the larger
r should be. In simple words, therefore, tuning r in Hr allows one to avoid
over-�tting.

This concludes the brief introduction to the many facets of SC considered
in this manuscript which is a metaphorical dance between powerful physics
intuitions, rigorous mathematical results and practical questions of applica-
bility of our proposed algorithms to real-world problems.

outline and contributions
In order to provide the reader with the necessary tools needed to best under-
stand our contributions, Part I introduces the technical results exploited in
the remainder. In particular, Chapter 1 provides an introduction to graphs,
together with their de�nitions and properties. Then, Chapter 2 gives the fun-
damental tools of statistical physics on which our main �ndings rely. Finally,
Chapter 3 introduces some important mathematical results on the spectral
properties of two matrices of fundamental importance in this manuscript:
the non-backtracking and the aforementioned Bethe-Hessian matrices.

Part II is then dedicated to the presentation of our original contributions to
SC for CD and is opened by Chapter 4 that provides an extensive introduction
to the problem.

Here we take the “torch” of our predecessors and address the problem
of how overly simplistic assumptions may result in poor algorithmic per-
formances. Speci�cally, in [SKZ14], the authors proposed a very powerful
spectral algorithm for CD in very sparse graphs, based on the Bethe-Hessian
matrix Hr. Their theoretical results are formulated under the assumption

3 We consider k = 2 for simplicity, but we will show in the remainder that Hr can be used for
SC in the presence of k ≥ 2 classes.
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that the matrix A is generated from the stochastic block model (SBM), accord-
ing to which each node of the graph has approximately the same number
of connections. Real social networks (in which CD is of utmost importance),
however, are known to be typically heterogeneous, in the sense that the num-
ber of connections each node has varies a lot across the network. As a conse-
quence of this overly simplifying assumption, the algorithm of [SKZ14] (that
prescribes a precise choice of r) often performs poorly compared to classical
SC algorithms (see Table 7.1).

Our earliest works are presented in Chapter 5 and explain how we im-
proved over [SKZ14], considering a more realistic generative model, called
degree corrected stochastic block model (DCSBM) which indeed allows one to
keep the graph heterogeneity into account. The �rst of these works is [DC19]

LD, Romain Couillet: Community detection in sparse realistic graphs: Improving the

Bethe-Hessian in ICASSP IEEE International Conference on Acoustics, Speech
and Signal Processing (2019)

in which we proposed (for k = 2 classes of equal size) an alternative choice
of r from the one of [SKZ14], able to provide high performance clustering on
heterogeneous graphs. The proposed parametrization r, however, requires
the knowledge of some of the parameters of the generative model of the
graph that cannot be given for granted.

With our next contribution [DCT19]

LD, Romain Couillet, Nicolas Tremblay: Revisiting the Bethe-Hessian: Improved Com-

munity Detection in Sparse Heterogeneous Graphs in NeurIPS Advances in Neural
Information Processing Systems 32 (2019)

we answered some of the main open questions of [DC19] . First, we extended
our results to the setting of k ≥ 2 classes of arbitrary size, showing that a se-
quence of properly chosen parameters r must be selected to get an e�cient
SC algorithm on heterogeneous graphs. Secondly, we showed that these pa-
rameters r can be estimated in an unsupervised way. We did so unveiling
an unforeseen property of the eigenvalues of the non-backtracking matrix
B used in [Krz+13] and exploiting the known relation between B and Hr

determined by the Ihara-Bass formula [Ter10]. Finally, backed by several ar-
guments and numerical simulations, we claimed our proposed parametriza-
tion to be optimal, in the sense that no other parametrization is expected to
perform better on DCSBM-generated graphs.

Having a practical way to estimate the optimal values of r in an unsuper-
vised way further allowed us to devise and test a practical algorithm for CD.
The results con�rm that the improved parametrization achieves a systematic
higher performance with respect to [SKZ14] on all tested datasets.

In the SC literature, however, not only the contributions of the physics
community led to very e�cient algorithms on sparse graphs. In fact, a no-
table and independent line of work, with an approach rooted in statistics,
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proposed the use of new regularized matrices for SC. In this introduction
we only mention one these matrices, Lsym

τ = D−1/2
τ AD−1/2

τ , proposed in
[QR13] with Dτ = D + τ In for τ equal to the graph average degree. This
is de facto the state-of-the-art of SC for CD on real graphs. In Chapter 6 we
present our work related to Lsym

τ , started in [DCT20c]

LD, Romain Couillet, Nicolas Tremblay: Optimal Laplacian regularization for sparse

spectral community detection in ICASSP IEEE International Conference on
Acoustics, Speech and Signal Processing (2020)

in which we showed that there exists a clear relation between the Bethe-
Hessian matrix Hr and the regularized Laplacian Lsym

τ . Furthermore, based
on our results in [DC19; DCT19] we showed that the choice of τ of [QR13] is
suboptimal. The optimal Laplacian regularization is obtained with a set of τ

closely related to the r’s to be adopted for Hr and that can be estimated from
the graph in an unsupervised fashion. Matter of factly, some of the results
presented in Chapters 5, 6 are taken from [DCT20a]

LD, Romain Couillet, Nicolas Tremblay: A uni�ed framework for spectral clustering

in sparse graphs accepted to Journal of machine learning research

in which we summarized our results in a uni�ed framework making formal
statements of our conjectures and providing rigorous proofs to part of them.
A further big contribution of [DCT20a] is at the centre of Chapter 7 and con-
cerns the applicability of our proposed algorithms on practical real graphs
as well as their e�cient implementation. Here we propose Algorithm 7.1 for
CD and conduct a systematic study on real datasets showing the e�ciency of
our proposed method for practical tasks. On top of this we also released an
e�cient implementation in Julia language of Algorithm 7.1 for CD, called
CoDeBetHe.jl (Community Detection with the Bethe Hessian).

Chapter 8 �nally closes part II starting from the results posed in [DCT20a]
to provide a uni�ed view of several SC methods that have so far been treated
independently. In this chapter, in fact, we clearly show that our proposed
algorithm is adaptive to the hardness of the clustering task and that com-
mon state-of-the-art methods in both the sparse and dense regime can be
understood as limiting (suboptimal) cases of Algorithm 7.1.

These results pose solid methodological foundations that led us to work
on the extensions of our works to more general settings than CD, treated
in Part III. The �rst problem we considered concerns dynamical community

detection (DCD), which enriches the description by keeping the dynamical
nature of real-world graphs into account. In [DCT20b]

LD, Romain Couillet, Nicolas Tremblay: Community detection in sparse time-

evolving graphs with a dynamical Bethe-Hessian in NeurIPS Advances in Neural
Information Processing Systems 33 (2020)

we considered a sequence of graph snapshots at di�erent times with the as-
sumption that community labels may change across time, while having a

https://github.com/lorenzodallamico/CoDeBetHe.jl
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positive correlation. We developed a novel SC algorithm based on a dynam-
ical Bethe-Hessian matrix which is capable of exploiting the information
coming from these correlations and that largely outperforms the state-of-
the-art competitors. The results of [DCT20b] are treated in Chapter 9 and
the corresponding algorithm is also part of the CoDeBetHe.jl package.

Finally, the work of [DCT21]

LD, Romain Couillet, Nicolas Tremblay: Nishimori meets Bethe: a spectral method for

node classi�cation in sparse weighted graphs in Journal of Statistical Mechanics:
Theory and Experiment

is presented in Chapter 10 and treats the extension of our works to the
setting of matrix sparsi�cation to improve the e�ciency of SC, while keep-
ing high performances. Testing our proposed algorithm on the prototypical
problem in machine learning of clustering a set of images of dogs and cats,
we showed that almost perfect accuracy can be achieved even for dramatic
levels of sparsi�cation, making our algorithm suited for clustering very large
datasets. The main result of [DCT21] , however, is deeply related to statisti-
cal physics, describing an explicit relation between the Bethe approximation
(from which the Bethe-Hessian matrix is derived) and the Nishimori temper-

ature [Nis81], of fundamental importance in the physics of spin-glasses and
in Bayes-optimal inference [Iba99].

Together, these works o�er a new vision and robust adaptive algorithms,
linking statistical physics and more conventional SC methods and able to
handle unsupervised clustering in sparse, heterogeneous and dynamical graphs.

We now proceed with the technical chapters of the manuscript that intro-
duce the necessary tools to fully describe our contributions.

https://github.com/lorenzodallamico/CoDeBetHe.jl


T E C H N I C A L T O O L S
This part is devoted to the introduction of the technical tools
needed to describe the original work presented in this manuscript.
Notably, it is composed of three chapters. The �rst one is ded-
icated to the properties of graphs, the second one to statistical
physics methods adapted to sparse graphs and, �nally, the last
one to the study of the spectra of the non-backtracking and
Bethe-Hessian matrices.





1
AN IN TRODUCT ION TO

NETWORKS AND GRAPHS

Abstract

This chapter introduces networks and some of their recurrent properties observed in

real-world settings. Graphs are then de�ned as the mathematical representation of net-

works and three probabilistic graphmodels (namely, the Erdős-Rényi (ER), the stochas-
tic block model (SBM) and the degree corrected stochastic block model (DCSBM) mod-

els) are introduced. These models are useful to generate random graphs reproducing

some of the properties typically observed in real-world networks and will be key to

de�ne our main results in the remainder.

1.1 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.1 De�nition and representations . . . . . . . . . . . . . 14
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1.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Matrix representation of graphs . . . . . . . . . . . . 20

1.3 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Erdős-Rényi random graphs . . . . . . . . . . . . . . 22
1.3.2 The stochastic block model . . . . . . . . . . . . . . 26

This chapter serves as an introduction to networks, which are a key pro-
tagonist of this manuscript. Networks can be de�ned as a set of items, called
nodes together with a set of connections between the nodes, called edges

[New03; BH11]: an example of a small network is represented in the left
plot of Figure 1.1. This informal de�nition evidences that networks are a
versatile tool to characterize systems of several interacting items and, as a
consequence, they have been adopted to model a wide range of systems,
such as social networks [Sco88; WF+94], technological networks [Ama+00],
spatial networks [Bar11], biological networks [AA03] and many others.

Our main interest in networks revolves around the problem of creating
node embeddings, i.e. to provide a small dimensional representation to the el-
ements of a network. The goal of this operation is to “translate” a mathemat-

13



14 an introduction to networks and graphs

Figure 1.1: Left: an example of a graph with n = 12 nodes. Each red dot indicates a
node, while each black line represents an edge. Right: major highways
in the USA, taken from [Bar03].

ically complicated object such as a network, into a set of small dimensional
vectors, preserving at least some of the network’s properties.

For this reason, to fully address our main contributions and to settle the
“vocabulary” of the following chapters, we must �rst proceed with a descrip-
tion of networks. We do so following an ideal path leading from observation
to theory. In particular, Section 1.1 can be seen as the observation step in
which networks are introduced as physical objects and their main character-
istics as well as their possible representations are discussed. Subsequently,
Section 1.2 takes the role of a formalization step, de�ning graphs as themath-

ematical representation of networks and laying out the main mathematical
de�nitions. The third step is the model creation, necessary for a thorough
analytical study of graphs. This is the content of the concluding Section 1.3
that introduces simple models – of central importance in the remainder –
to generate random graphs, together with their main properties and relate
these random models to the real networks discussed in Section 1.1.

1.1 networks

1.1.1 definition and representations
To best understand networks, we now proceed to give some practical ex-
amples of real-world systems that can be represented as networks, together
with their main representations.

We start considering the simplest family of networks which are undirected
and unweighted. The toy representation in the left plot of Figure 1.1 falls pre-
cisely in this class in which the relation between two nodes is solely encoded
by the existence of an edge connecting them. The term unweighted standsUndirected and

unweighted networks indeed for the fact that each edge does not bring any additional information
beyond its existence. The term undirected, instead, signi�es that a symmetry
is assumed in the interaction of the two nodes, hence that if node i interacts
with node j, than node j interacts with node i.
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Figure 1.2: Left: an example of a directed graph with n = 12 nodes. Each red dot
indicates a node, while each black arrow represents an edge together
with the direction in which the edge is pointing. Right: a toy example
of a multiplexed network with two layers indicated by di�erent colours.

The representation of a complex system of, for example, people, with an
unweighted and undirected network might come at the cost of a signi�cant
simpli�cation and the question of what kind of interaction should be en-
coded by edges has no simple answer [Zwe14]. Nevertheless, a lot of systems
can be modelled with unweighted and undirected networks. Some exam-
ples are given by social networks, the world wide web and biological networks

[Sco88; WF+94; New03; AB02]. The remainder of the manuscript focuses
mainly on this class of networks in which information is only encoded in the
edge con�guration, hence in how nodes are connected among themselves.

A richer representation that goes beyond the binary information of whether
or not two nodes interact is obtained with weighted networks [Bar+04]. In
this case, each edge carries additional information on the type of relation
between the nodes, in terms of, e.g., intensity of a�nity. In some networks
weights are easily de�ned, for example when considering spatial networks
[Bar11], like the one shown in the right plot of Figure 1.1. There, each node Weighted networks

represents a city, each road an edge and a weight can be attributed to each
edge as function, for example, of the length of the road itself. Another ex-
ample is the network Slashdot Zoo [KLB09] in which users express a
positive or negative endorsement with respect to other users leading to a
signed network with positive and negative weights.

A limitation of both classes of networks just introduced is that they as-
sume commutativity in the relationships between items, i.e. that the interac-
tion between a and b is the same as the one between b and a. If this hypothe- Directed networks

sis is not veri�ed, then it is more appropriate to recur to directed networks in
which each edge encodes an orientation of the relationship between nodes,
as shown in the left plot of Figure 1.2. For reference, one could consider a
network in which an edge (ab) goes from node a to node b if node a sent an
email to node b [NFB02]. It appears natural that the edge (ba) has a di�er-
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ent meaning from (ab), justifying the need of a directed network to describe
relationships in this case. Other examples of directed networks are for exam-
ple citation networks [TS92] for which the edge (ab) is a citation of author
b from author a, or the links on the webpages on the internet [Bar03]. A
natural consequence of adding directionality to the edges is to be capable
of grasping the causality of the relations and to describe how information
�ows on the network.

The last network representation we consider takes into account that in
the wide range of systems that can be modelled by networks, it may occur
that the relationship between the nodes of a network is not measurable only
in terms of a single parameter. Suppose, for instance, one wants to deter-
mine the a�nity between people. Many factors should be kept into account
like, for example, age, geographical provenance, spoken language, social ex-
traction, political orientations and so on. The a�nity between items is not
necessarily determined by a simple combination of the a�nities at di�erent
levels, but should rather take a vector form, allowing for the possibility toMultiplexed and

temporal networks have a large a�nity according to some parameters but not to others. The use
of multiplexed networks [Kiv+14] (or multilayer networks) is most suited to
this scenario: in this case, multiple representations of the same network are
given, encoding information at di�erent levels as in the example shown in
the right plot of Figure 1.2. For reference, a practical example of a real-world
multiplexed network is the one showing parental and economical relations
between the families of Florence during Renaissance [BP86] or by transporta-
tion networks in which each layer corresponds to a di�erent line, such as bus,
tram, underground lines [Kiv+14].

As a particular class of multiplexed networks one can consider temporal

networks [HS12] in which the di�erent representations of the network sim-
ply indicate its evolution across time. Most real-world networks are indeed
dynamical and some examples are found in human proximity networks, bi-
ological networks, communication networks among the others. The study of
temporal networks will be at the centre of Chapter 9.

After this short introduction on the di�erent types of networks and some
examples of systems that can be modelled by networks, we now proceed
with the characterization of some properties that occur in several real-world
networks with a speci�c focus to the unweighted and undirected case.

1.1.2 properties of real networks
As we detailed in the previous paragraph, networks can represent fundamen-
tally di�erent systems hence the emergence of some universal behavior is
not an obvious fact. It appears instead that many real-world networks share
some peculiarities, regardless of the underlying system. We now proceed to
present some of these properties, while keeping in mind that they should
not be intended as laws, but rather, very recurrent observations.
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Figure 1.3: Empirical degree distribution P(k). A: actor collaboration graph. B: The
World Wide Web. C: Power grid network. Picture taken from [BA99].

The �rst aspect that typically characterizes real-world networks is the so-
called small world e�ect [WS98]. This property is veri�ed when, considering
a network composed by n items, the average distance (i.e. the number of
interposing nodes) between two arbitrary nodes grows as log(n) [Bar03] (or Small world e�ect

even slower). This e�ect is observed in sociology with the fact that humans
are on average “six handshakes away” from one-another [Mil67; Gua90]. The
small world e�ect is observed way beyond social networks, for example in
the World Wide Web [Bar03]. As a consequence of this e�ect, information
�ows rapidly on networks and an emerging behavior can be observed.

Another peculiar aspect characterizing real-world networks is the degree

distribution. It has been observed in a vast number of networks that the num-
ber of connections each node has (we call this number the degree) is far from The degree

distributiona homogeneous distribution [BA99] (see Figure 1.3). Typically, this distribu-
tion is, instead, a power law. In this case we talk about scale free networks.
When dealing with a broad degree distribution, most nodes have very few
connections while very few are highly connected. These nodes play a promi-
nent role due to their high connectivity and are called hubs.

Remaining on the properties of the degree distribution, in real-world net-
works the average degree is typically very small compared to its size. This
phenomenon goes under the name of sparsity. In others words, out of all the
possible connections that can take place, only a very small fraction are typi- Sparsity

cally present [Bar13]. Consequently, for a large network, the average degree
can be considered as roughly independent of the size of the network itself.

The �nal property we wish to introduce concerns the clustering e�ect. This
consists in the formation of small groups of highly connected items as a
consequence of the fact that, in social networks, connections are formed on The clustering e�ect

a homophilic principle, i.e. they are created between items sharing similar
properties [LM+54; MSLC01]. Due to the weak transitivity of homophily1

[BH11], highly connected communities emerge in networks.

1 If A as a homophilic relation with B and B with C, then it is likely that A has a homophilic
relation with C. The expression weak transitivity is used to denote that the relationship is
only likely to be homophilic, while transitivity would lead to an implication.



18 an introduction to networks and graphs

These four properties represent some fundamental characteristics of real
world networks, considered in the remainder. The clustering e�ect and the
consequent emergence of a community structure is, in particular, what pri-
marily justi�es the task of node clustering. Sparsity and heterogeneity of
the degree distribution are instead challenging features to deal with when
performing node clustering.

With this introduction on the main properties of real-world networks at
hand, we proceed to de�ne graphs as the mathematical representation of
networks and laying out some formal de�nitions.

1.2 from networks to graphs

1.2.1 definitions
To formally characterize graphs as the mathematical representation of net-
works, only single-layered graphs are considered: multiplexed and temporal
graphs can be seen as an extension of single-layer graphs and are not for-
mally introduced here. Further discussions on temporal graphs will follow
in Chapter 9. Let us �rst formally introduce the de�nition of a graph.

De�nition 1.1 (Graph). A graph G(V , Ed) is a tuple (V , Ed)with V the set ofA directed edge (ij)

i

j

n nodes (or vertices) and Ed the set of edges connecting the nodes. For all e ∈ Ed
a weight ωe ∈ R can be associated. The set of weights isW = {ωe}e∈Ed .

The set Ed denotes the ensemble of all the directed edges ofG(V , Ed). Each
element e ∈ Ed can be equivalently written as (ij), representing a directed
edge from i to j. The inverse of (ij) is (ji) and is denoted by e−1. For an
undirected graph, if e ∈ Ed then e−1 ∈ Ed. The set of undirected edges is
denoted with E (with |Ed| = 2|E |) and an undirected graph with G(V , E).
In the sequel we consider only graphs in which no self-edge exists, hence
verifying for all i ∈ V , (ii) /∈ E .

If G(V , Ed) is an unweighted graph, then ωe = 1 for all e. Note that
we allow ωe ∈ R: this is not a customary choice as often the weight is
required to be strictly positive. We consider this more general case however,
because it is particularly handy for our introduction to statistical physics in
Chapter 2, as well as our work concerning sparsi�cation of kernel matricesIn red the node i, in

blue its neighbours,

in green the

remaining nodes

i

for spectral clustering presented in Chapter 10. In any case, the following
de�nitions do not involve the weights but only the structure of G(V , Ed).

We now introduce the concept of adjacency on a graph.

De�nition 1.2 (Adjacent nodes and edges). Given a graph G(V , Ed), j ∈ V
is said to be an adjacent node of i ∈ V if (ij) ∈ Ed. Two directed edges (ij), (kl)
are said to be adjacent if j = k.

The set of all adjacent nodes of i ∈ V forms the neighbourhood of i.
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De�nition 1.3 (Neighbourhood and degree). The incoming neighbourhood
of a node i is de�ned as ∂ini = {j ∈ V : (ji) ∈ Ed}, while the outgoing
neighbourhood is ∂outi = {j ∈ V : (ij) ∈ Ed}. The size of these two

neighbourhoods are called incoming degree, din
i = |∂ini|, and outgoing de-

gree, dout
i = |∂outi|. For undirected graphs ∂ini = ∂outi ≡ ∂i and the degree

is de�ned as di = |∂i|.

If a node has no neighbours, we say it is isolated. On an undirected graph
this corresponds to the condition di = 0. Neighbours are nodes that can be
reached in one step. Exploiting this relation, we now introduce paths. In blue, a simple path

connecting i and j

i

j

De�nition 1.4 (Paths). A path between i and j is an ordered sequence of ad-

jacent edges starting from i and ending in j, Pij = {(ik), (k·), . . . , (·l), (l j)}.
The length of the path is |Pij|. A path is simple if no edge appears twice.

Note that on undirected graphs, all paths can be followed in reversed order
and, if a path exists between two nodes, then they are said to be connected.

De�nition 1.5 (Connected nodes). On an undirected graph, if there exists a

path Pij from i to j (or equivalently from j to i), then i and j are said to be

connected. The connected components of G(V , E) are the disjoint sets of all
nodes that are pairwise connected. If there is a unique connected component

equal to V , then G(V , E) is said to be a connected graph.

This de�nition exploits the fact that connectivity is commutative on undi-
rected graphs. On the opposite, this is not the case for directed graphs in
which there may exist a path from i to j, but not from j to i. We talk in
this case about weak connectivity if there is a path Pij or Pji and of strong
connectivity if both Pij and Pji exist.

The last de�nition provided is that of trees that play a crucial role in the
following chapters. In order to de�ne trees, cycles need to be introduced: a
simple path that starts and ends from the same node, is called a cycle.

De�nition 1.6 (Tree). An undirected graph G(V , E) is said to be a tree if it

is connected and it does not contain any cycle.

A tree

The particular interest in trees in this manuscript is a consequence of their
structural relation with conditional independence [WJ08]. Speci�cally, sup-
pose that a random variable xi is associated to each node i ∈ V and that the
dependences between these variables are determined by the edge structure.
As a consequence of the fact that a tree is a connected graph, for any pair
of nodes, i, j ∈ V , there exists a path connecting them and xi and xj are
not independent. On a tree, however, this path is unique and if any node of
the path connecting i to j (supposing they are not neighbours) is removed,
then i and j are no longer connected and xi and xj become independent. This
structural property of tree allows one to say that for any k ∈ Pij, the variable
xi depends on xj only through xk, hence xi and xj are independent, condi-
tionally to the value of xk. This fact makes it particularly easy to deal with
dependences between random variables on tree nodes and will be further
exploited in the remainder.
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Figure 1.4: Left: an undirected graph G(V , E) with n = 5 nodes. Right: the adja-

cency matrix A corresponding to G(V , E).

Now that we have introduced the main de�nitions concerning graphs, we
turn our attention to their matrix representation.

1.2.2 matrix representation of graphs
Let us introduce two fundamental matrices that can be used to represent un-
weighted graphs. These are, namely, the adjacency and the non-backtracking
matrices and will be of central importance in the remainder.

The adjacency matrix

The adjacency matrix (denoted as A) is the most straightforward represen-
tation of a graph. In words, for each pair of nodes i, j, the entry Aij indicates
whether the two nodes are adjacent or not. De�nition 1.7 formally intro-
duces the adjacency matrix.

De�nition 1.7 (Adjacency matrix). The adjacencymatrix of a graphG(V , Ed)

with n nodes is denoted with A ∈ {0, 1}n×n
with entries

∀ i, j ∈ V Aij = I(ij)∈Ed
,

where the notation Ix denotes the indicator function, equal to one if condition

x is veri�ed and zero otherwise. For an undirected graph, A is symmetric.

A visualization of A and the corresponding graph is given in Figure 1.4.
For a given graph, the matrix A is uniquely de�ned and vice-versa. For this
reason we say A is a representation of G(V , Ed).

The adjacency matrix is not the only possible matrix representation of
a graph: an alternative, less conventional, representation (of fundamental
importance in the following) is provided by the non-backtracking matrix that
is de�ned on the set of edges (instead of nodes) of the graph.

The non-backtracking matrix

The non-backtracking matrix, denoted with B and also known as Hashimoto
edge operator [Has89], can be seen as the directed adjacency matrix of a
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graph G ′(V ′, E ′d) constructed as follows: each directed edge in Ed is mapped Highlight on two

adjacent edges that

do not form a

backtrack

to a node in V ′ and an edge is drawn in E ′d between the nodes correspond-
ing to e1, e2 ∈ Ed if e1 and e2 are adjacent and e1 6= e−1

2 , i.e if e2 is not
the same edge as e1 with reversed orientation. The reason of the name non-

backtracking comes from the fact that edges in G ′(V ′, E ′d) correspond to
paths of length 2 in G(V , Ed) without a backtrack, i.e. paths that cross the
same edge in the two directions. The matrix B is de�ned as follows:

De�nition 1.8 (Non-backtracking matrix). For a graph G(V , Ed), the non-

backtracking matrix B ∈ {0, 1}|Ed|×|Ed| is de�ned as

∀ (ij), (kl) ∈ Ed B(ij)(kl) = δjk(1− δil).

Note that on a undirected graph, A is symmetric, while B is not.

Remark 1.1. In De�nition 1.8 the entries of the matrix B are in one-to-one

correspondence with the edges of a directed graph G(V , Ed). If the input graph

G(V , E) is undirected, the non-backtracking matrix is still de�ned on the set

of its directed edges Ed with |Ed| = 2|E | in which the edges (ij) and (ji) are
distinguished.

With the main de�nitions laid out, we now move to the description of
some generative models of random graphs of utmost importance in the re-
mainder of the manuscript. We in particular introduce the Erdős-Rényi model
as the simplest random graph generative model, together with its variations
adapted to generate random graphs with a community structure.

1.3 random graphs
In order to get a deeper grasp, make theoretical predictions and have a more
profound understanding over classes of graphs (and not single realizations)
a reductionist approach is needed. Random generative model, depending on
few, highly interpretable parameters, are introduced to create graphs that
resemble – at least under some aspects – real-world graphs. For a given
generative model, then, the probability of an event on the graph (like, e.g., “All models are

wrong some are

useful”

George Box

the existence of a cycle of a given length) can be studied. From now on,
unless otherwise speci�ed, we considered undirected graphs.

The reductionist approach has its strengths and weaknesses. Having a
well de�ned probabilistic model to generate G(V , E) introduces good math-
ematical control over di�erent graph-related quantities, particularly in the
asymptotic regime of large graphs (with n → ∞). On the down side, of
course, simplifying the description of complicated objects into simple gener-
ative models leaves necessarily some relevant features behind. For this rea-
son, in the following sections, when introducing the generative models un-
der analysis, we will try to emphasize which property of typical real graphs
are caught by the considered generative model and which ones are not.
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Many random graphs models have been introduced in the literature. Some
relevant examples that will not be discussed since they go beyond the scope
of this introduction, are the small world model of [WS98], the preferential at-
tachment model of [AB02] and the Dorogovtsev-Mendes model [DM02]. The
remainder will focus on Erdős-Rényi random graphs, together with its exten-
sions to generate graphs with a community structure: the (degree-corrected)
stochastic block model.

1.3.1 erdős-rényi random graphs

Out of all the models of random graphs, the ER model [ER60] is the sim-
plest and most studied. The ER graphs constitute a class of unweighted and
undirected graphs. The essence of the ER model is to generate the edges of
G(V , E) independently at random with equal probability. Formally, recall-
ing the bijection between G(V , E) and the adjacency matrix associated to it,
we de�ne the ER model as follows:

De�nition 1.9 (Erdős-Rényi graph). Let c ∈ R+
be a positive scalar. The

entries of the adjacency matrix Aji = Aij of a random Erdős-Rényi graph are

set to 1 independently at random with probability
c
n and to 0 otherwise.

From a straightforward calculation, one obtains for n � 1 that c is the
expected average degree of the graph. The ER random graphs show some
relevant properties, especially in the asymptotic regime of n→ ∞ that will
be assumed in the following. The �rst of these properties concerns the per-Emergence of a giant

component
colation threshold, that is, establishing for what c the largest connected com-
ponent of G(V , E) has a number of nodes proportional to n. This largest
connected component takes the name, in the asymptotic regime, of giant
component and there exists a sharp transition in the value of c determining
its appearance [BJR07], as shown in Figure 1.5.

Property 1.1 (Percolation threshold for ER). Let G(V , E) be an Erdős-Rényi

random graph as in De�nition 1.9. Then, for all large n with high probability,

the largest component of G(V , E) has On(n) nodes if and only if c > 1. If it
exists, there is only one connected component with On(n) nodes.

The notation an = On(bn) is equivalent to limn→∞ bn/an = κ, with κ

independent of n. The percolation threshold has applications in solid state
physics, epidemiology and technological networks among others [KNZ14].

We now take into consideration the degree distribution of ER random
graphs [BB01, Chapter 3].
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Figure 1.5: Size of the largest connected component divided by n as function of c
for di�erent ER-generated random graphs. The black vertical line is at
c = 1. For this simulation, n = 106 and no averaging has been taken.

Property 1.2 (Degree distribution of ER). Let G(V , E) be a Erdős-Rényi ran-
dom graph as in De�nition 1.9 with n → ∞. Then, the following facts hold

The degree

distribution of ER

random graphs
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k/
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i) The probability distribution of the degree sequence follows a Binomial dis-

tribution. Let p = c/n

P(di = k) =
(

n− 1
k

)
pk (1− p)n−1−k ,

hence in the large n limit, the expected average degree is equal to c.

ii) If c/log(n)→ ∞ as n→ ∞, then, with high probability

max
i∈V
|di − c| = on(c).

iii) For n→ ∞, with high probability,

min di > 0 ⇐⇒ c > log (n).

The notation an = on(bn) is equivalent to limn→∞ an/bn = 0. From
Property 1.2, it turns out that for a su�ciently high average degree c, the de-
gree distribution is almost regular, hence far from the properties of degree
heterogeneity studied in real networks. As a matter of fact, for small values
of c, even if the degree distribution is not almost regular, it is far from being
a broad scale free distribution. As a consequence, the degree distribution of
ER random graphs is not suited to describe real-world graphs. Property 1.2
further states the existence of a connectivity transition: below the critical
threshold, G(V , E) has isolated nodes, while above the threshold it is con-
nected with high probability.

Among the properties typically observed in real world networks, we recall
the small world e�ect according to which there exist a short path (compared
to n) connecting any two nodes in G(V , E). This property holds with high
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probability also in ER graphs [AB02, for example], if G(V , E) is connected.Small world e�ect in

ER graphs This means that ER random graphs are a suitable candidate to model small-
world e�ect of real-world graphs.

Property 1.3 (Average distance between nodes of ER). Let G(V , E) be an
Erdős-Rényi random graph as in De�nition 1.9, with c > log (n). The average
distance between two arbitrarily chosen nodes is proportional to log(n)/log(c).

For 1 < c < log (n), the presence of disconnected nodes is such that the
distance between two arbitrarily chosen nodes diverges but Property 1.3 can
be extended to this case considering only the giant component of G(V , E).

With these properties of the degree distribution being laid out, we take
the occasion to formally introduce the concept of sparse and dense graphs inThe asymptotic

de�nition of sparse
and dense graphs

the asymptotic regime. An ER graph is said to be sparse if, in the asymptotic
limit of large n, its average degree stays �nite, i.e. if c = On(1). Conversely,
if the expected average degree goes to in�nity, the graph is said to be dense.
It is worth making further considerations on the asymptotic de�nition of
sparsity and relate it with the intuitive one introduced in Section 1.1. In that
context, sparse indicated a network with an average degree much smaller
than its size n, while here a graph is sparse if its average degree stays �nite
as n goes to in�nity. The two ideas are somewhat related, but they are not
coincident. From a practical viewpoint, all networks are �nite and one couldOn the asymptotic

de�nition of sparsity

vs the

network-related

concept of sparsity

question the e�cacy of a de�nition that only holds in the asymptotic regime.
How to state for �nite n whether a network is sparse or not?

The concept of sparsity (and of density) in the asymptotic limit is much
more related to random matrix theory (RMT) than it is to network theory. It
has nonetheless to be noted that also the asymptotic de�nition of sparsity is
not unique, with some authors (see e.g. [BGBK+20]) that would de�ne sparse
a graph in which c = on(log (n)). In agreement with some relevant works
on CD on sparse graphs [Dec+11; Krz+13; BLM15] and the fact that RMT nat-
urally comes into play in our work, we adopt the asymptotic de�nition of
sparsity, imposing c = On(1). We will explain however that this choice is
not compromising, showing that our proposed algorithms do not rely on the
speci�c de�nition of sparsity.

To conclude this section concerning the main properties of ER random
graphs, we introduce the locally tree-like structure that characterizes theLocally tree-like

structure sparse regime. Let us denote with Gi(V , E) a rooted graph, i.e. a graph in
which a particular node i ∈ V (the root) is speci�ed. Denote with Bi(t) the
ball of radius t around the node i, i.e. the sub-graph made by the set of all
nodes that can be reached from i in at most t steps and the corresponding
edges. If the law of Bi(t) under uniformly random sampling of the root
admits a limit L, then we call it local weak limit [Sal11]. In words, L is the
asymptotic local distribution of G(V , E) as seen from a random vertex. For
a more formal statement of the concept of local weak convergence, refer to
[Sal11; DM+10a]. For a sparse ER random graph, with c = On(1), the law
of a uniformly randomly rooted ER converges locally to the Poisson Galton-

Watson (GW) distribution with parameter c.
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i

Figure 1.6: A toy example of a Poisson GW tree. In red the root i, in blue the �rst
generation of nodes, in green the second.

Property 1.4 (Convergence to Poisson Galton-Watson tree of ER). A sparse
ER random graph rooted at i with c = On(1) converges locally to a Poisson

GW tree so obtained: consider the node i as the root and generate di neighbours

(called sons), where di is a Poisson
2
random variable with parameter c and

iteratively repeat the operation for each son, creating the following generations.

As a consequence of this property, a sparse ER graph locally looks like

a tree and hence, with high probability, there are no cycles of �nite size.
Figure 1.6 displays an example of a Poisson GW tree, rooted at i.

The tree-like approximation of sparse graphs will be of fundamental use
in the following but it raises an important question when compared to real-
world graphs. We argued earlier that real networks are sparse in the sense
that the average degree is very small compared to n and that it is convenient
to introduce an asymptotic concept of sparsity in prevision to the applica-
tions to RMT. As a “side e�ect” however, the resulting ER graph turns out to Real networks are

sparse but not

tree-like

be locally tree-like. This property is not necessarily met in real networks in
which, on the opposite, many short cycles may be present. We will be obliv-
ious of this major di�erence for most of the follow up discussions in which
the tree-like assumption will be heavily exploited. This question will reap-
pear in Chapter 7 in which we will consider the validity of our theoretical
approach (based on the tree-like approximation) on real graphs.

The main feature captured by the ER random model is the small world ef-
fect which is of major importance in complex networks. As we mentioned
already in Section 1.1, the focus of our work is devoted to the problem of
node classi�cation hence on how the nodes of a graph can be divided into
groups, according to the preferential attachment described by the edge con-
�guration3. The ER model completely misses this point, since all nodes are
“equal” and no reasonable partition can be made. It can rather be seen as
good null model: any algorithm should not �nd a community structure on

2 Note that in the sparse regime, for n → ∞ the Binomial distribution convergences towards
a Poisson distribution.

3 A di�erent possible way to encode information concerning the nodes’ features, is by assign-
ing a weight to each edge. This case is, for the moment, not considered and its analysis is
deferred to Chapter 10
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a c

b d

Figure 1.7: a: the dolphin network [Lus03] with the colour code indicating class
membership. b: the adjacency matrix of a. c: a realization of the SBM
(De�nition 1.10) with k = 4 communities with colour code indicating
the class membership. d: the adjacency matrix of c.

a ER random graph. We now proceed introducing two variations to the ER
model that describe random graphs with a community structure.

1.3.2 the stochastic block model
As a consequence of the homophilic nature of interactions on social graphs,
typically real networks are structured in communities [GN02]. A more ex-
tensive discussion on communities and the problem of community detection
will be treated in Part II. As an example, the plot a of Figure 1.7 displays aThe community

structure of real

graphs

real network with a community structure: the node colour code identi�es the
communities and clearly evidences that connections within communities are
more likely than connections across communities. This can be equivalently
visualized in terms of the matrix A, as shown in the plot b of Figure 1.7, in
which the basis of the adjacency matrix is chosen so that nodes in the same
community are close to one another.

The complete homogeneity of ER random graphs makes them unsuited
to describe this self-organization behavior and a more involved model is
necessary. We introduce a variation of the ER model, which goes under the
name of stochastic block model (SBM) [HLL83].
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i

Figure 1.8: A toy example of a Poisson GW tree with a two class community struc-
ture. The color code indicates the class label assignment.

De�nition 1.10 (Stochastic block model). Let ` ∈ {1, . . . , k}n
be the class

label vector, where k is the number of classes and P(`i = a) = πa. Further The stochastic block

model
let C ∈ Rk×k

be a symmetric matrix with positive elements. The entries of the

matrix Aij = Aji are set to one independently at random with probability

P(Aij = 1) = min
(C`i ,`j

n
, 1
)

,

and are equal to zero otherwise.

The matrix C represents the class a�nity matrix and imposes di�erent
average degrees between nodes in the same community and nodes in dif-
ferent communities, hence reproducing the class structure. The vector π =

(π1, . . . , πk) determines the class sizes. Let Va = {i :∈ V : `i = a}, then
it is easy to see that the expectation of the class size is E[|Va|] = nπa. Plot
c of Figure 1.7 shows a realization of a graph generated from the SBM, while
the plot d displays the corresponding adjacency matrix.

The SBM inherits many of the properties of the ER model: the small world
e�ect, the degree distribution and the convergence to a Poisson GW tree in
the sparse regime. In particular, we now de�ne a GW tree with labels: for each
node with label a, a Poisson random number with mean Cabπb of sons will
be assigned to class b [MNS18, for istance]. For example, in the case of two
communities of equal size (π = 12/2), the expected number of neighbours
of a node in class a is Caa nodes in class a, and Cab nodes in class b, with
Caa > Cab. A toy representation of this process is shown in Figure 1.8.

As we just mentioned, the SBM, like the ER, has a very regular degree distri-
bution, not adapted to model real-world networks. To �x this limitation, the
degree corrected stochastic block model (DCSBM) [KN11] is introduced which,
in addition to generating a class structure also allows one to have an arbi-
trary node degree distribution.
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De�nition 1.11 (Degree corrected stochastic block model). Let ` ∈ {1, . . . , k}n

be the class label vector, where k is the number of classes and P(`i = a) = πa

and let C ∈ Rk×k
be a symmetric matrix with positive elements.The degree corrected

stochastic block

model

Let θ ∈ Θ = [θmin, θmax] be a random variable that encodes the intrinsic

node connectivity, distributed according to ν, satisfying
∫

Θ dν(θ) = 1 (nor-

malization), E[θ] =
∫

Θ θ dν(θ) = 1, E[θ2] =
∫

Θ θ2 dν(θ) ≡ Φ = On(1).
For each node, θi is drawn independently at random from the distribution ν.

The entries of the matrix Aij = Aji are set to one independently at random

with probability

P(Aij = 1) = min
(

θiθj
C`i ,`j

n
, 1
)

,

and are equal to zero otherwise.

From a simple computation, one can see that the expected average degree
of node i is proportional to θi, i.e. E[di] ∝ θi. Consequently the vector θ =

(θ1, . . . , θn) can be used to produce any degree distribution on the graph.

For the DCSBM we established in [DCT20a] the percolation threshold inPercolation threshold

in the DCSBM the particular case in which the expected average degree is the same for all
classes. The result is formally stated as follows:

Theorem 1.1 (Percolation threshold in DCSBM, [DCT20a]). Consider a graph
G(V , E) generated according to the DCSBM procedure as in De�nition 1.11. Let

Π = diag(π1, . . . , πk) and assume that the constant c is the largest eigen-

value of CΠ with eigenvector 1k. Then, for all large n, with high probability,

G(V , E) has a giant component if and only if cΦ > 1.

From a simple calculation, one obtains that c is the expected average de-
gree of G(V , E) and Theorem 1.1 can be straightforwardly related to Prop-
erty 1.1. The proof of Theorem 1.1 is provided in Appendix A.

To conclude this Section, let us recapitulate the main properties of the
DCSBM. The DCSBM captures the small world e�ect typically observed in real
networks and is suited to produce a graph with an arbitrary degree distribu-
tion (hence even a broad, power law distribution). The typical organization
into communities of real networks is also correctly described by the DCSBM.
This model however inherits, in its sparse version for Cab = On(1), a locally
tree-like structure4 from the ER and the SBM. As we mentioned already, this
property will be heavily exploited in the remainder and the legitimacy of
ignoring this discrepancy will be further discussed in Chapter 7.

This concludes our introduction to graphs, leaving place to the next chap-
ter on statistical physics. In particular, we will introduce the Ising model on
a graph, in which to each node is associated a random variable si called spin.

4 This time the size of each labelled progeny is a Poisson with mean CabπbΦ [GLM15].
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THE I S ING MODEL ON

SPARSE GRAPHS

Abstract

This chapter provides an introduction to statistical physics, with a particular attention

to the Ising model describing interacting spins placed in correspondence to the nodes

of a graph. This model is studied with the help of two closely related approximations

(namely belief propagation (BP) and the Bethe approximation) that are asymptotically

exact on locally tree-like graphs such as the sparse realizations of the degree corrected
stochastic block model (DCSBM). The tools introduced in this chapter will be extensively
exploited in Parts II, III.

2.1 The Boltzmann distribution . . . . . . . . . . . . . . . . . . . 29
2.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Tree-like approximations . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Belief propagation . . . . . . . . . . . . . . . . . . . 35
2.3.2 The Bethe approximation . . . . . . . . . . . . . . . 39

Statistical physics plays an important role in shaping the technical parts
of this manuscript in terms of methods, approximations and intuitions. In
fact, statistical physics has signi�cantly contributed to the analysis and de-
sign of new (and old) algorithms for machine learning and, more in general,
for statistical inference [Car+19; Iba99; ZK16; OS01; MM09, for instance].
Speci�cally, parts II and III show how Ising-like models [Isi25] on graphs
can be exploited to interpret and improve e�cient algorithms for spectral

clustering (SC). The role of this chapter is hence to provide the reader a basic
description of the methods, approximations and interpretations of Ising-like
models on graphs.

2.1 the boltzmann distribution
Statistical physics has its origin back in the second half of 19th century when
a lot of e�ort was conveyed by the scienti�c community to give a mechan-

29
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ical interpretation to thermal phenomena [Bru76a]. The laws of thermody-
namics describe the behavior of (almost in�nitely) many bodies (particles,
molecules...) from a coarse grained perspective, with only few parameters
such as the pressure and the temperature. These laws rely on axioms that do
not invoke any mechanical principle, using instead the concept of heat. Al-
though not formally de�ned, back in the 19th century, there was a general
agreement that heat could be intended as a form of movement [Bru76b].

As a historically relevant example [Max67], let us consider the classical
free gas problem to provide a practical case-study. With Newton laws it is
in principle possible, given a model describing the gas molecules interac-
tions, to compute the trajectories of each molecule across time. In practice,
it turns out that this is more of a mental experiment than other, since the typ-
ical number of molecules inside an average size room is of order 1023: for
this magnitude of the system, any analytical or numerical solution of New-The example of

the free gas ton’s equations is unapproachable, even with powerful modern computers.
To the impossibility of solving such a large system of equations, one needs
to add that of measuring the initial conditions of the system (i.e. positions
and velocities of all 1023 particles) needed to solve Newton’s equations.

A mechanical study of the free gas seems consequently unapproachable.
According to thermodynamics instead, only few parameters are su�cient
to describe the free gas: the pressure, temperature, volume and number of
molecules [Cla34]. This suggests that the information encoded by the trajec-
tories is redundant and way too rich: many di�erent gas con�gurations lead
to the same measurable macroscopic quantities.

This evidence required a new perspective relating the microscopic (where
Newton’s law are de�ned) to the macroscopic (where thermodynamics lays)
worlds. It was Boltzmann who gave the main contributions in the outbreak
of the probabilistic interpretation of thermodynamic [Gib14]. In this picture,From trajectories

to probability

distributions

the system as a whole is considered from a statistical viewpoint, and the
goal is determining the probability distribution (rather than the exact values)
of the position and velocity of molecules. This way, only few, measurable
parameters are su�cient to describe the system, relating the microscopic
scale interpretation to macroscopic thermodynamics observables [Par88].

Let us now formalize the probabilistic approach introduced by Boltzmann,
�rst de�ning the phase space. Let n be the number of items composing the
system and let df be the number of degrees of freedom each item has. In the
free gas example, n is the number of molecules and df = 6 are the three co-
ordinates of space and the three coordinates of velocity. Each gas con�gura-
tion is encoded by the vector f = { f 1

1 , . . . , f 1
df

, . . . , f n
1 , . . . , f n

df
} containing

all the coordinates of all degrees of freedom of each item. The space Ω in
which f lives is called the phase space. A con�guration of the system cor-
responds to a point in Ω and its evolution to a trajectory in Ω. Supposing



2.2 the ising model 31

to be at thermal equilibrium,1 each con�guration f ∈ Ω is visited with the
following probability

µβ( f ) =
e−βH( f )

Zβ
. (2.1)

This is the so-called Boltzmann distribution. The parameter β = (κBT)−1

The Boltzmann

distribution

is the inverse temperature,2 where κB is the Boltzmann constant and T the
temperature of the system. The function H( f ) is called Hamiltonian and
corresponds to the energetic cost of each con�guration f . Finally Zβ is the
normalization constant that, assuming that the variables f live in a discrete
space,3 is written as follows

Zβ = ∑
f∈Ω

e−βH( f ).

Averages over the Boltzmann distribution (2.1) are denoted with 〈·〉β. Taking
a closer look at Equation (2.1), each con�guration f ∈ Ω is visited with
a probability that depends on its energetic cost, favouring small energetic
con�gurations and its expression gives a microscopic interpretation of the
system. Three facts should be underlined at this point:

• all con�gurations with �nite energy can be visited with non-vanishing
probability;

• the temperature determines the rate of exploration: for large tempera-
tures (small β) high energy con�gurations are more likely to be visited;

• each observable quantity is a function of the system con�guration.

Now that the main concepts have been laid out, we de�ne and study the
Ising model [Isi25] which was developed to provide a microscopic interpre-
tation to spontaneous magnetization and is one of the most studied and well
understood problems in statistical physics.

2.2 the ising model
Some materials, called ferromagnetic, share the peculiar property of having
a spontaneous magnetic behaviour in absence of an external magnetic �eld
when taken below a critical, material dependent, temperature Tc, also known

1 The thermal equilibrium corresponds to a condition of the system such that the observables
are not evolving with time.

2 Note that β has the dimensionality of an inverse energy, but for simplicity we refer to it as
inverse temperature.

3 This assumption is made for simplicity as all the results can be reformulated in the continuous
limit using integrals instead of sums. In the following all considered con�gurations spaces
are indeed going to be discrete, justifying the reason of this choice.
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Figure 2.1: Saturation magnetization of iron (Fe), cobalt (Co) and nickel (Ni) as a
function of the temperature. Picture taken from [CG11].

as Curie temperature [CG11]. Above Tc, instead, no magnetic property is ob-
served. This behavior de�nes a phase transition between the ferromagnetic

phase at T < Tc in which the magnetic behavior is observed and the para-

magnetic phase at T > Tc in which no magnetic behaviour exists. An exper-
imental plot of this phase transition is shown in Figure 2.1

The ambition of the Ising model is to provide a microscopic interpretation
of the origin of spontaneous magnetization. The idea is to suppose that a fer-
romagnetic material is composed by a large number of interacting dipoles,
each one with its own magnetization, called spins, si ∈ {±1}. The magne-
tization of the material is given by the sum of all these spins: if they are
randomly arranged, then no magnetization appears, while it does otherwise.
Referring to Section 2.1, in this case the feature vector is f ≡ s and the
phase space is Ω = {±1}n. The summation is denoted ∑s∈Ω ≡ ∑s for con-
venience. The Hamiltonian, appearing in the Boltzmann distribution (2.1),
reads for the Ising model4 on an undirected graph G(V , E)

The Ising

Hamiltonian

H(s) = − ∑
(ij)∈E

Jijsisj −∑
i∈V

hisi, (2.2)

where the term Jij models the interaction between the spins si and sj and
hi is a local magnetic �eld applied to the spin si. Equation (2.2) is actually
the most generic form of the Hamiltonian: the problem originally solved by
Ising considers a one dimensional spin chains with:Four spins of a 1d

Ising chain

hi = h ∀ i (2.3)
Jij = J

(
δj,i+1 + δj,i−1

)
, (2.4)

for J > 0. According to Equations (2.2, 2.4) there is an energetic gain for
neighbouring spins to be aligned rewarding them with a negative energy

4 The expression “Ising Hamiltonian” for arbitrary couplings and �elds is a slight abuse of
language that is made to indicate that the spins are si ∈ {±}.
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contribution, while penalizing neighbouring spins with opposite orientation
with a positive energy contribution. The external �eld h polarizes all spins
towards the same direction. The lowest energy con�guration of the Hamil-
tonian (2.2) (called the ground state) under the constraint (2.4) is hence ob-
tained for s = 1n, corresponding to the ferromagnetic con�guration in which
all spins are aligned.

To determine whether or not this model predicts spontaneous magneti-
zation, it is necessary to study the explicit expression of the magnetization
m = 〈s〉β. Sadly for Ising, in absence of external magnetic �eld (h = 0),
no magnetization appears in one dimension. The model can however ex-
plain spontaneous magnetization in dimension greater or equal than two.5
To obtain the analytical expression of m it is necessary to compute the di-
mensionless free energy Fβ, de�ned as follows.

De�nition 2.1 (Dimensionless free energy). Let Zβ be the normalization

constant appearing in Equation (2.1). The dimensionless free energy is log (Zβ) is a
moment generating

function of the

Boltzmann

distribution

Fβ = −log Zβ.

The term dimensionless comes from the fact that Fβ, so de�ned does not
have the physical dimensionality of an energy. The magnetization is ob-
tained taking a derivative of Fβ with respect to the external �eld:

mi = 〈si〉β =
1

Zβ
∑

s
sie−βH(s) =

1
βZβ

∂hi ∑
s

e−βH(s)

=
1

βZβ
∂hi Zβ =

1
β

∂hi log Zβ = − 1
β

∂hi Fβ.

So, computing analytically the free energy corresponds to the main goal
and it is this function that determines the state of the system. The energy Fβ

can alternatively be written in a form known from classical thermodynamics.
Denoting the average energy with U = ∑sH(s)µβ(s) and the entropy with
S = −κB ∑s µβ(s)log µβ(s), then, from a straightforward calculation

Fβ = β(U − TS).

At low T, the con�gurations with small energy are favoured (see also
Equation (2.1)), while as the temperature increases, the entropic term gains
more weight and high energy con�gurations are more likely to be observed.
The temperature balances these two terms causing a phase transition be-
tween the ordered ferromagnetic con�guration at low T to a disordered para-
magnetic con�guration at high T.

5 Strictly speaking, spontaneous magnetization is observed also for a dimensionality d ∈ (1, 2).
A non-integer value d indicates a fractal dimensionality [Vez03, for instance]
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Figure 2.2: A toy model of the Ising model on a graph. The arrows indicate the spins
orientation.

The whole problem of computing m and consequently also Tc hence boils
down to �nding an explicit expression to Zβ. Unfortunately, this problem can
be solved for only few choices of J, such as (for instance) those correspond-
ing to the 1-dimensional Ising chain [Isi25], the 2-dimensional square lattice
[Ons44], the fully connected Curie-Weiss model [KPW13], the Bethe lattice
[Tho86]. When more involved geometries intervene and J corresponds to
the (weighted) adjacency matrix on an arbitrary graph G(V , E), the exact
computation of the partition function Zβ becomes intractable [DGM08] and
approximate methods must be adopted to obtain the result.

The interest in studying the Ising model for more complex geometries
and interactions comes from the fact that it represents the perhaps most
elementary way to model pairwise interactions. Its applicability is conse-
quently not bounded to the explication of spontaneous magnetization, but
has found several applications in a variety of �elds ranging from optimiza-
tion problems, computer science, biology, sociology and economics [CFL09;
SN13]. For this reason, we consider in the remainder the problem of how to
determine whether or not the system is in the paramagnetic phase6 in the
case in which J is a weighted adjacency matrix of a graph. The focus will be
on two methods, namely the Bethe approximation and the BP algorithm, to
study the Ising model on graphs.

From now on we assume that J is the weighted adjacency matrix of a
graph G(V , E) (as sketched in Figure 2.2) with hi = 0 for all i.

6 In the case of a ferromagnetic Ising Hamiltonian in which Jij = J > 0 for all (ij) ∈ E ,
only two phases exist: the paramagnetic and the ferromagnetic. In this case, determining the
stability condition of the paramagnetic phase is equivalent to determining the Curie temper-
ature. For other choices of J, the paramagnetic phase always exists, but the ferromagnetic
phase does not necessarily appear and other phases may emerge, instead. This case will be
further considered in Section 3.4 and in Chapter 10.
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2.3 tree-like approximations
In this section we introduce two approximate methods to study Ising-like
models on tree-like weighted graphs. Both approximations are introduced
in a discrete phase space more general than Ω = {±1}n, but deeper consid-
erations on the model and methods on how to determine the emergence of
the paramagnetic phase are made for Ising variables.

The two approximations here considered are the cavitymethod, also known
in the computer science literature under the name of belief propagation (BP)
[MPV87; Pea14; YFW+00] and the variational Bethe approximation [Bet35;
Pei36]. The two methods are adapted to sparse, locally tree-like graphs and
introduce the non-backtracking and Bethe-Hessian matrices, of central im-
portance to Parts II and III, providing them with a physical interpretation.

2.3.1 belief propagation
Belief propagation is an iterative algorithm used to compute the marginal
probabilities of a factorized probability distribution, such as µβ(s). Lemma 2.1
in particular is the main result on which BP algorithm builds, providing an
exact expression of the node and edge marginals of a probability distribution
de�ned on a tree [WJ08, for instance].

Lemma 2.1 (Belief propagation on a tree). Let G(V , E) be a tree and let µ(s)
be a probability distribution de�ned on G(V , E) satisfying

µ(s) = ∏
(ij)∈E

φij(sisj), (2.5)

with s ∈ {1, . . . , k}n
. Then the edge marginal µij(si, sj) = ∑s\si ,sj

µ(s) and
the node marginal µi(si) = ∑s\si

µ(s) can be written in the following form:

µi(si) = ∏
k∈∂i

ηki(si) (2.6)

µij(sisj) = φij(sisj) ∏
k∈∂i\j

ηki(si) ∏
l∈∂j\i

ηl j(sj). (2.7)

The quantities ηij(sj) are de�ned on the set of directed edges Ed and are called

messages.

From Equation (2.6, 2.7), exploiting µi(si) = ∑sj
µij(si, sj), it is obtained

that the messages have to satisfy the following �xed point equation

Message passingηji(si) = ∑
sj

φij(si, sj) ∏
l∈∂j\i

ηl j(sj). (2.8)

Solving Equation (2.8) and then injecting the result in Equation (2.6, 2.7),
one obtains the node and edge marginal distributions. Of course, Lemma 2.1
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Figure 2.3: Sketch of a tree. The node i in red, while in green, blue and orange the
edges and nodes Eix,Vix with x = j, k, l, respectively.

is relevant for determining the magnetization of the Ising model on a tree,
since the Boltzmann distribution µβ(s) can precisely be written in the form
of Equation (2.5). Lemma 2.1 however only applies to trees and not to graphs
with cycles for which loopy BP should be instead considered. Before detailing
the extension of BP to the case of graphs with cycles (hence that are not
trees) we sketch here the proof of Lemma 2.1 since it is very pedagogical
and helpful to understand the essence of BP algorithm.

Proof of Lemma 2.1. Consider an directed edge (ij) ∈ Ed and let Eij be de-
�ned as follows

Eij = {(kl) ∈ E : ∃ PNB
(ij),(kl) ∧ PNB

(ij),(lk)},

where PNB
e,e′ is a non-backtracking path from for e to e′. By convention, if no

such path exists, then PNB
e,e′ = ∅, while (ij) ∈ Eij. In words, Eij is the set of

all undirected edges that can be reached from i only passing through j. As a
consequence of the fact that on a tree there exists a unique path connecting
any two nodes, the two following properties are veri�ed:

∀ i ∈ V , E =
⋃

k∈∂i

Eik ; (2.9)

∀ (ij) ∈ E , E = {(ij)} ∪
⋃

k∈∂i\j

Eik︸ ︷︷ ︸
reached from (ji)

∪
⋃

l∈∂j\i
Ejl︸ ︷︷ ︸

reached from (ij)

. (2.10)

Furthermore, note that ∀ j 6= k, Eij ∩ Eik = ∅. A pictorial representation
of the de�nition of Eij is given in Figure 2.3. Exploiting Equation (2.9), µ(s)
can then be written as:

µ(s) = ∏
(ab)∈E

φab(sa, sb) = ∏
k∈∂i

∏
(ab)∈Eik

φab(sa, sb) ≡ ∏
k∈∂i

ψik(sVik),
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where Vik is the set of nodes connected by edges in Eik (i included). The node
marginal can then be written in the following form

µi(si) = ∑
s\si

µ(s) = ∑
s\si

∏
k∈∂i

ψik(sVik) = ∏
k∈∂i

∑
sVik
\si

ψik(sVik).

Denoting ηji(si) = ∑sVik
\si

ψik(sVik), we obtain the �rst equation of Lemma 2.1.
Note that ηji(si) indeed only depends on si since the sum is run over all
spins sVik , except si. Proceeding in a similar way, the expression of the edge
marginal is obtained from Equation (2.10).

The essence of the proof of Lemma 2.1 relies on the conditional indepen-
dence of the node variables on trees that we already discussed in Chapter 1.
More speci�cally, to obtain Equation (2.9), one could imagine to remove the
node i, obtaining di (the degree of i) disconnected sub-graphs in which vari-
ables are independent and hence factorize. Similarly Equation (2.10) is ob-
tained removing the nodes i and j from the graph.

The proof of Lemma 2.1 hence heavily exploits the conditional indepen-
dence and the fact that for any pair of nodes, only a single path connecting
them exists, since there are no cycles. But what happens when cycles are
present? It was stated in Chapter 1 that sparse ER, SBM, DCSBM graphs are lo- BP on graphs

with cyclescally tree-like, i.e. with high probability they contain cycles but of no �nite
size. Consequently, removing a node i from G(V , E) one obtains di subsets
of nodes that are not independent (since they are not disconnected) but that
are only weakly dependent. This intuition is at the basis of loopy BP that
consists in approximating the marginals in the following way:

ηji(si) =
Zi

Zji
∑
sj

φij(si, sj) ∏
l∈∂j\i

ηl j(sj). (2.11)

µi(si) ≈
1
Zi

∏
k∈∂i

ηki(si) (2.12)

µij(si, sj) ≈
1

Zij
φij(si, sj) ∏

k∈∂i\j
ηki(si) ∏

l∈∂j\i
ηl j(sj), (2.13)

where Zi, Zij are the normalization constant and, we recall, the≈ sign comes
from the fact that G(V , E) is not a tree.

The application of the BP algorithm of graphs with cycles is known to give,
in general, very good performances [MWJ13], but even more interestingly,
it has been shown that on locally tree-like graphs (such as sparse ER) the es-
timation of the marginals is asymptotically exact [DM+10b]. To con�rm this
result, Figure 2.4 shows the average magnetization m̄ = 1

n 1Tm as a function
of the inverse temperature β for a ferromagnetic Ising model with J = JA,
with A the adjacency matrix of a ER sparse graph (De�nitions 1.7 and 1.9).
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Figure 2.4: Average magnetization as a function of βJ for a Ising model on a graph
in which J = JA and A is the adjacency matrix of a ER graph with
n = 30 000 and c = 5. The red curve is the value of m̄ obtained from
BP, while the black dots using a Monte Carlo Markov chain simulation.
The vertical line is the theoretical prediction of the phase transition.

The prediction of BP is compared to the direct computation of m̄ achieved
by Monte Carlo method [Has70], evidencing an almost perfect agreement.

To conclude this section, we wish to show how the stability of the param-
agnetic phase can be estimated from BP on a Ising model (for which we recall
that si ∈ {±1}) and how BP equations are related to the non-backtrackingHigh temperature

expansion of BP matrix introduced in De�nition 1.8. To do so, we consider the so-called para-

magnetic �xed point of Equation (2.11), corresponding to the case in which
the messages are constant, i.e., independent of s. This corresponds to the
paramagnetic phase, since, from Equation (2.12) also the node marginal is
independent of s, hence m = 0n. Letting ηji(si) = ∑sj

φij(si, sj)(1+ εijsj),
one obtains, to �rst order in ε(•)

εij = ∑
l∈∂j\i

th(βJjl)εjl + h.o.t.,

where h.o.t. denotes the higher order terms in ε•. This equation can be more
succinctly written as

BUβ,Jε = ε + h.o.t., (2.14)

where Uβ,J ∈ R|Ed|×|Ed| has entries
(
Uβ,J

)
e,e′ = δe,e′ th(βJe) and B is the

non-backtracking matrix of De�nition 1.8. The critical (inverse) temperature
βc determining the instability of the paramagnetic phase is

λ
↓|·|
1 (BUβc,J) = 1,

where λ
↓|·|
1 (·) denotes the eigenvalue of a matrix with largest modulus.

When β < βc, then the paramagnetic phase is stable, since iterating Equa-
tion (2.14), the perturbation ε vanishes, while it is not for β > βc. The



2.3 tree-like approximations 39

spectral properties of BUβ are hence fundamental to determine the value of
βc and are considered in Chapter 3.

We now consider the second method adapted to sparse tree-like graphs,
namely the Bethe approximation.

2.3.2 the bethe approximation
An alternative method to estimate the averages on factorized probability dis-
tribution on sparse graphs relies on a variational approach. We recall that the
ultimate goal we have is to obtain an analytic expression of the free energy
Fβ a task that is, in general, not feasible. The basic idea of variational ap-
proaches is to substitute the expression of µβ(s) which makes the problem
intractable, with another distribution pq(s) that can be treated analytically.
The vector q represents a set of parameters on which pq(s) depends and
q should be chosen so to obtain the best approximation of Fβ, given the ex-
pression of pq. Explicitly this is done introducing the variational free energy
F̃β(q) as in Equation (2.15):

F̃β(q) = ∑
s

pq(s)
(

βH(s) + log pq(s)
)

. (2.15)

When can immediately see that, for any distribution pq(s), F̃β(q) ≥ Fβ: in

The variational

free energy

fact, exploiting βH(s) = Fβ − log µ(s), one obtains

F̃β(q) = Fβ + ∑
s

pq(s) log
pq(s)
µβ(s)

= Fβ + DKL(pq‖µβ) ≥ Fβ,

where DKL(·‖·) is the Kullback-Leibler divergence which is always greater
or equal to zero [Cov99]. Finding the minimum of F̃β(q) with respect to q
is the same as minimizing the Kullback-Leibler divergence, which is notori-
ously a measure of resemblance of two probability distributions.

arg min
q

F̃β(q) = arg min
q

DKL(pq‖µβ).

The rationale behind the Bethe approximation [Bet35; Pei36] is well ex-
plained by the following corollary of Lemma 2.1.

Corollary 2.1 (Factorization of µ(s) on a tree). Under the same hypothesis

of Lemma 2.1, the probability distribution µ(s) can be written as

µ(s) = ∏
(ij)∈E

µij(si, sj)∏
i∈V

[µi(si)]
1−di ,

where di is the degree of node i.
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The proof of Corollary 2.1 is straightforward from Lemma 2.1. The Bethe
approximation hence uses as pq(s) a distribution that factorizes as in Corol-
lary 2.1. Once again, this approximation is exact on trees and it is expected
to be accurate in sparse graphs. Explicitly, we obtain:

pBethe
m̂,χ̂ (s) = ∏

(ij)∈E

1 + m̂isi + m̂jsj + χ̂ijsisj

4 ∏
i∈V

[
1 + m̂isi

2

]1−di

, (2.16)

where7 m̂i = ∑s pBethe
m̂,χ̂ (s)si, while χ̂ij = ∑s pBethe

m̂,χ̂ (s)sisj. from this ex-
pression the variational Bethe free energy reads

F̃Bethe
β (m̂, χ̂) = − ∑

(ij)∈E
βJijχ̂ij + ∑

(ij)∈E
∑
sisj

f
(

1 + m̂isi + m̂jsj + χ̂ijsisj

4

)
+ ∑

i∈V
(1− di)∑

si

f
(

1 + m̂isi

2

)
, (2.17)

where f (x) = x log(x). To �nd the “stable” con�gurations of m̂, χ̂ it is
then necessary to minimize the variational free energy with respect to its
arguments. Interestingly, the �xed points of BP are minima of the Bethe
free energy [MPV87; WF10; Hes+03] drawing a tight relation between the
two methods that one could already guess from the relation between Corol-
lary 2.1 and Lemma 2.1. This relation is well explained using the Bethe free
energy to determine the stability condition of the paramagnetic phase, in-
troducing a protagonist of this manuscript: the Bethe-Hessian matrix. To
accomplish this task, we must verify under what conditions m̂ = 0n is a
minimum of the variational free energy, so we �rst impose the gradient of
F̃Bethe

β (m̂, χ̂) to be equal to zero in m̂ = 0n.

0 = ∇m̂ F̃Bethe
β (m̂, χ̂)

∣∣∣
m̂=0n

0 = ∇χ̂ F̃Bethe
β (m̂, χ̂)

∣∣∣
m̂=0n

.

The �rst condition is always veri�ed, while the second imposes χ̂ij = th(βJij).
To determine whether or not m̂ = 0n is a minimum of the free energy, we
need to compute the Hessian matrix in m̂ = 0n that reads [WF10]

The weighted

Bethe-Hessian

matrix

(
Hβ,J

)
ij ≡

∂2F̃Bethe
β (m̂, χ̂)

∂m̂i∂m̂j

∣∣∣∣∣
m̂=0n

= δij

(
1 + ∑

k∈∂i

th2(βJik)

1− th2(βJik)

)
−

th(βJij)

1− th2(βJij)
. (2.18)

7 The notation m̂ is used to stress the fact that m is the exact value of 〈s〉β, while m̂ is the one
obtained from the Bethe approximation.



2.3 tree-like approximations 41

< c

Im
ag(

)

< c

= c

Real( )

Im
ag(

)
= c

Figure 2.5: Left: histogram of the eigenvalues of the matrix Hβ,J (with a zoom on
the smallest) for β < βc (on top) and β = βc on the bottom. The vertical
line is at λ = 0. Right: scatter plot of the real and imaginary part of the
eigenvalues of BUβ,J , highlighting in red the largest for β < βc (on top)
and β = βc on the bottom. The vertical line is at Re(λ) = 1. For this
simulation, J = A, where A is the adjacency matrix of an ER random
graph with n = 3 500 and c = 5.

The presence of negative eigenvalues in the spectrum of Hβ,J implies that
m̂ = 0n is not the global minimum, hence that the paramagnetic phase is
not the stable con�guration. Note that, for β su�ciently small, m̂ = 0n is
indeed a minimum of the Bethe free energy: in fact Hβ=0,J = In. In order
to determine the condition under which Hβ,J displays negative eigenvalues,
it is useful to introduce the following de�nition of the generalized Bethe-

Hessian of which Hβ,J constitutes a particular case.

De�nition 2.2 (Generalized Bethe-Hessian matrix). Given a graph G(V , E),
a vector ω ∈ R|Ed| so that ωe = ωe−1 and a parameter r ∈ C \ {±ωe}e∈Ed ,

the generalized Bethe-Hessian matrix Hω(r) ∈ Cn×n
is de�ned as

(Hω(r))ij = δij

(
1 + ∑

k∈∂i

ω2
ik

r2 −ω2
ik

)
−

rωij

r2 −ω2
ij

.

The matrix Hβ,J then simply corresponds to the choice r = 1 and ωij =

th(βJij). The matrix Hω(r) has an important relation with the weighted non-
backtracking matrix introduced in Section 2.3.1, as stated by the following
theorem [WF11; SMM14]:

Theorem 2.1 (Watanabe-Fukumizu formula). Let B be the non-backtracking

matrix of a graph G(V , E) and let ωe ∈ R be a weight associated to each edge

in Ed, with ωe = ωe−1 . Denote with Uω ∈ R|Ed| the diagonal matrix with en-

tries Uω,ee′ = δe,e′ωe. Letting Hω(r) be the generalized Bethe-Hessian matrix

of De�nition 2.2, the following relation holds for all r ∈ C \ {±ωij}(ij)∈Ed
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det
[
rI|Ed| − BUω

]
= det [Hω(r)] ∏

(ij)∈E

(
r2 −ω2

ij

)
.

This theorem is a generalized form of the Ihara-Bass formula [Ter10]
which is obtained for ωij = 1 for all (ij). Exploiting Theorem 2.1, then
one obtains the following relation

λ
↓|·|
1 (BUβc,J) = 1 =⇒ det[Hβc,J ] = 0,

where we recall that βc is the prediction of transition temperature accord-
ing to BP. The two approximations hence give the same prediction of the
transition temperature, since βc is the smallest β for which det[Hβ,J ] = 0.
This behavior is schematized in Figure 2.5 in which the spectra of the matri-
ces B and Hβ,J are shown for two di�erent values of β.

To conclude, in this chapter we introduced the basics of statistical physics
and of Ising-like models, detailing two methods of fundamental importance
for the analysis of the Ising model on sparse graphs. The study of the stabil-
ity of the paramagnetic phase allowed us to naturally introduce two deeply
related matrices that are the non-backtracking and the Bethe-Hessian. We
showed that the spectral properties of these matrices are fundamental to
draw conclusion on the transition temperatures and a more detailed study
of these properties is the object of the next chapter.
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Abstract

This chapter summarizes some of the most relevant results in random matrix theory
(RMT) to describe the spectral properties of the non-backtracking and Bethe-Hessianma-

trices of graphs generated from the degree corrected stochastic block model (DCSBM).
Beyond the rigorous existing results, this chapter further details some heuristic argu-

ments and non-rigorous techniques that have been used in the past (as well as in the

remainder of the manuscript) to study the spectrum of the aforementioned matrices.
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In this chapter the spectral properties (i.e. the behavior concerning the set
of eigenvalues and eigenvectors) of the non-backtracking and Bethe-Hessian
matrices introduced in the previous chapters are studied, with a particular
attention to the case of large random graphs generated from the degree cor-

rected stochastic block model (DCSBM). The concepts and results introduced
in this chapter form a bridge between Chapter 2 in which these matrices
were given a physical interpretation and the subsequent chapters of Part II
and III in which they will be exploited to analyze and propose algorithms for
spectral clustering (SC). The objective of this chapter is hence twofold: on one
side it is to give the rationale behind SC from a random matrix theory (RMT)
perspective; on the other side it is to introduce the main existing results from
the literature of RMT that will be exploited in the remainder.
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44 spectral properties of the non-backtracking and bethe-hessian matrices

3.1 basic definitions
Let us �rst of all lay out some de�nitions concerning matrix eigenvalues with
a particular focus to large random matrices. In the following, λi(M) denotes
an arbitrary eigenvalue of M. Hermitian matrices have only real eigenvalues
that, consequently, can be ordered [Bha13]. We denote in particular with
λ↑i (M) the i-th smallest eigenvalue of M and with λ↓i (M) the i-th largest.
For non-Hermitian matrices, eigenvalues may have a non-zero imaginary
part and λ

↑/↓|·|
i (M) denotes the i-th smallest/largest eigenvalue in modulus.

We now de�ne the empirical spectral measure µ̃M(λ) of a matrix [CD11].

De�nition 3.1 (Empirical spectral distribution). Given a square matrix M ∈
Cn×n

the empirical spectral measure of its eigenvalues is de�ned as

µ̃M(λ) =
1
n

n

∑
i=1

Iλ=λi(M),

where we recall that Ix is the indicator function. In the particular case in
which M is a Hermitian matrix, hence λi(M) ∈ R for all i, µ̃M(λ) is the
histogram of the eigenvalues of M. The de�nition of the empirical spectral
measure allows us to introduce the fundamental concept of isolated and bulk

eigenvalues on large random matrices.

De�nition 3.2 (Bulk and isolated eigenvalues). Let M ∈ Cn×n
be a ran-

dom matrix so that, for all large n with high probability, the empirical spectral

measure of M converges to a limit measure, i.e.

µ̃M(λ) −→
n→∞

µ(λ).

Denoting with supp(µ) the support of the limiting measure and with λmax =

max
λ∈supp(µ)

|λ|, all eigenvalues λi(M) that satisfy

min
λ∈supp(µ)

∣∣∣∣λ− λi(M)

λmax

∣∣∣∣ = on(1)

are said to be bulk eigenvalues, while all others are isolated eigenvalues.

Looking at De�nition 3.1, a non vanishing value of µ̃M(λ) implies, in the
large n limit, that many eigenvalues of M are almost degenerate. When an
eigenvalue of M is isolated instead, it is found at a macroscopic distance
from all others and it does not contribute to µ̃M(λ). This de�nition is ofSC is based on the

existence of isolated

eigenvalues

crucial importance for the remainder, because SC on large random matrices
relies on the exploitation of the isolated eigenvalues of a properly chosen
matrix. In fact, in simple words, the eigenvectors associated to the isolated
eigenvalues of M are related to the expectation of M, while the bulk eigen-
values to its noisy part, as it will be shown in the remainder of this chapter in
which this statement will be made more rigorous. Figure 3.1 shows a toy rep-
resentation of the bulk and isolated eigenvalues of a matrix, together with
the corresponding empirical and limiting spectral measures.
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Figure 3.1: Spectrum of the adjacency matrix of a ER random graph with n = 800
and c = 50, averaged over 10 realizations showing the empirical (in red)
and limiting (in blue) distributions.

We now get to the detailed study of some spectral properties, relevant
to the results introduced in the next chapters, of the non-backtracking and
Bethe-Hessian matrices.

3.2 the non-backtracking matrix
First of all, let us recall the de�nition of the non-backtracking matrix B on a
graph G(V , E). The matrix B ∈ R|Ed|×|Ed| is de�ned on the set of directed
edges of G(V , E) and reads

∀ (ij), (kl) ∈ Ed, B(ij),(kl) = δjk(1− δil). (3.1)

The non-backtracking matrix hence is non-symmetric also on undirected
graphs and consequently its eigenvalues are not necessarily real. In Chap-
ter 2 we also introduced the weighted version of the non-backtracking ma-
trix, obtained from the linearization of belief propagation (BP) equations, that
can be written as BUω, where Uω = diag(ω) ∈ R|Ed|×|Ed| and ω ∈ R|Ed|

is a vector encoding the weight of each directed edge of G(V , E).

We �rst initiate our introduction of the spectral properties of the non-
backtracking matrix, limiting ourselves to the unweighted case, to then make
further considerations to the more general weighted case.

3.2.1 sparse dcsbm

The adoption of the non-backtracking for spectral clustering (SC) was pro-
posed in [Krz+13] in which the authors pioneered a method to conjecture
some of the spectral properties of B on large sparse stochastic block model

(SBM) (De�nition 1.10) random graphs with k = 2 communities of equal size.
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Figure 3.2: Scatter plot in blue of the real vs. imaginary part of the eigenvalues of B
of Equation (3.1). For this simulation, n = 3 500, k = 2, c = 5, θ = 1n,
cout = 0.5. The orange lines are the theoretical prediction of Claim 3.1.

We report here the claim formulated in [Krz+13], together with the heuristic
method to derive it that will also be adopted in the subsequent chapters.

Claim 3.1 (Spectrum of B on 2-class sparse SBM). Let G(V , E) be a realiza-
tion of a 2-class SBM as in De�nition 1.10 with π1 = π2 (the two classes have

asymptotically equal size) and C`i ,`j = cin if `i = `j and equals cout otherwise.

Denote with c = (cin + cout)/2 = On(1) the expected average degree and

suppose (cin − cout)/2 >
√

c. Then, for all large n, with high probability, the

two largest eigenvalues of B in modulus are real, isolated and satisfy

λ
↓|·|
1 (B) = c + on(1)

λ
↓|·|
2 (B) =

cin − cout

2
+ on(1).

All other eigenvalues satisfy |λ↓|·|i≥3(B)| ≤
√

c + on(1).

The assumption (cin− cout)/2 >
√

c is technical and is needed to ensure
that λ

↓|·|
2 (B) is isolated. We will come back to this hypothesis in Chapter 4,

explaining its deep meaning and relation to information theory. For the mo-
ment, however, we treat it as a technical requirement needed to obtain two
isolated eigenvalues in the spectrum of B (see Figure 3.2) and proceed detail-
ing the intuitions leading to the conjecture of [Krz+13].

A realization of a sparse SBM locally converges to a tree for which random
variables de�ned on the nodes of the graph are conditionally independent
[GLM15]. To exploit this property, we express the probability distribution of
the label of a neighbour of an arbitrarily chosen node i, conditionally to `i
using Bayes theorem ,Bayes theorem

P(A|B) =
P(B|A)P(B)

P(A)

P(`j|`i, Aij = 1) =
P(Aij = 1|`i, `j)

∑`j
P(Aij = 1|`i, `j)

=
C`i ,`j

2c
. (3.2)
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So, for each node j in the neighbourhood of i, `i = `j with probability
cin/(cin + cout) and `i 6= `j with probability cout/(cin + cout). Moreover, A node in class a has

Cab/2 neighbours in

class b on average

i

the variables `j for j ∈ ∂i are asymptotically independent conditionally to
`i due to the locally tree-like structure of G(V , E). These facts are at the
base of Claim 3.1 whose validity is argued in tree steps: (i) de�ne a guess

eigenvector of B; (ii) show that in expectation (over Equation (3.2)) it is an
eigenvector of B; (iii) determine under what conditions the variance of the
guess eigenvector vanishes, hence guaranteeing the goodness of the approx-
imation of guess eigenvector with its expectation.

First of all, the guess eigenvector g(r) of B is de�ned , with r an integer
guaranteeing that, for any node i ∈ V , the sub-graph formed by all nodes
that are at most r steps away from i is tree-like.

The guess
eigenvectorg(r)ij =

1
λr ∑

(ωx) : d(jk,ωx)=r
k 6=i

σx, (3.3)

where {(jk) : d(jk, ωx) = r} is the set of directed edges (jk) such that the
shortest non-backtracking path connecting (jk) to (wx) is of length r and
σx = 1 if `x = 1 and σx = −1 if `x = 2. The sum in Equation (3.3) runs over
an exponentially large (in r) number of terms hence, for r su�ciently large,
one expects good concentration properties of g(r). From a simple calculation,
the following identity is veri�ed

“Almost” eigenvalue

equationBg(r) = λg(r+1), (3.4)

which means that g(r) is “almost” an eigenvector of B, provided that the
dependence on r is small. Furthermore, λ represents the eigenvalue of this
approximate eigenvector equation. Studying the expectation of g(r), we de-
termine the value of λ so that g(r) depends on r only marginally. For conve-
nience, g(r) is rewritten in the following form:

g(r)ij =
1
λr ∑

(qω) : d(jk,qω)=r−1
k 6=i

∑
x∈∂ω\q

σx.

We now take the expectation of the inner term conditionally to σω:

E

 ∑
x∈∂ω\q

σx

 =
cin − cout

2
σω.

This gives a recursive formula for E[g(r)ij ], in fact The expectation of

the guess eigenvector

E[g(r)ij ] =
1
λr ∑

(qω) : d(jk,qω)=r−1
k 6=i

cin − cout

2
σω

=
cin − cout

2λ
E[g(r−1)

ij ] = ... =
(

cin − cout

2λ

)r

σj,



48 spectral properties of the non-backtracking and bethe-hessian matrices

which leads to the natural choice λ = (cin − cout)/2 that should corre-
spond to an approximate eigenvalue of B as is Equation (3.4). To determine
whether or not g(r) is well approximated by its expectation, its variance has
to be studied. Let us �rst take under analysis the second moment, following
a similar procedure to the one adopted in [Mos04] for trees.

The variance of the

guess eigenvector

E

[(
g(r)ij

)2
]
=

1
λ2r ∑

(ωx) : d(jk,ωx)=r
k 6=i

∑
(vy) : d(jk,vy)=r

k 6=i

E[σxσy]

=
1

λ2r ∑
(ωx) : d(jk,ωx)=r

k 6=i

1 + ∑
(vy) : d(jk,vy)=r

k 6=i,(vy) 6=(ωx)

E[σxσy]

 .

Taking the second term under analysis:

∑
(vy) : d(jk,vy)=r

k 6=i,(vy) 6=(ωx)

E[σxσy] ≈ ∑
(vy) : d(jk,vy)=r

k 6=i,(vy) 6=(ωx)

E[σx]E[σy]

≈ ∑
(vy) : d(jk,vy)=r

k 6=i

E[σx]E[σy],

where we exploited that for x 6= y σx is asymptotically independent of σy

and that the number of paths of length r from (jk) is exponentially large in
r: for r su�ciently large (say r ∼ log(n)) removing the path (jk) → (ωx)
is only a minor approximation. One then obtains

V
[

g(r)ji

]
≈ 1

λ2r ∑
(ωx) : d(jk,ωx)=r

1 =
( c

λ2

)r
,

hence the variance vanishes whenever λ = (cin − cout)/2 >
√

c. Com-
paring this result with Claim 3.1, this is precisely the hypothesis that guar-
antees λ

↓|·|
2 (B) to be an isolated eigenvalue of the non-backtracking matrix.

Repeating the same procedure, but letting σi = 1 for all i, one gets that
λ
↓|·|
i (B) = c + on(1) as stated in Claim 3.1. This short proof shows that

the eigenvalue λ
↓|·|
2 (B) is associated to an eigenvector that depends on the

class structure of G(V , E) so long that it is an isolated eigenvalue. When
λ
↓|·|
2 (B) ≤

√
c, instead, this approximation is no longer valid and this eigen-

value is lost among the bulk eigenvalues of B.

The claim of [Krz+13] attracted a lot of attention from the mathematical
community and in [BLM15] Claim 3.1 was formally proved and extended to
the case of k ≥ 2 communities of arbitrary size. Although formally more rig-
orous, the idea underlying the proof of [BLM15] follows the steps described
above, based on the local convergence of G(V , E) to a tree. To enunciate the
main theorem of [BLM15] let us introduce the following assumption that is
formulated under the more general DCSBM hypothesis.
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Assumption 3.1. Let C ∈ Rk×k
be the class a�nity matrix and π be the

expected class size vector as in De�nition 1.11, with Π = diag(π). Further

let θ be the vector encoding the degree heterogeneity in the DCSBM and denote

Φ = E[θ2
i ]. The matrices C, Π satisfy the following hypothesis: The eigenvalues of

CΠ are real, in fact,

for 1 ≤ p ≤ k

CΠvp = λpv

CΠ C1/2ωp︸ ︷︷ ︸
vp

= λp C1/2ωp︸ ︷︷ ︸
vp

C1/2ΠC1/2︸ ︷︷ ︸
Hermitian

ωp = λp︸︷︷︸
∈R

ωp

• CΠ1k = c1k, for some positive c,

• λp(CΠ)Φ >
√

cΦ for all 1 ≤ p ≤ k.

Let us get deeper into the details of this assumption.

1. First, recall from De�nition 1.11 that all entries of C and π are positive,
hence all entries of CΠ are positive as well. This implies that there
is a non-null probability of connection between any two classes. As
a consequence, one may apply the Perron-Frobenius theorem [JH85,
Theorems 8.2.2, 8.2.4] on CΠ: its eigenvalue of largest modulus, de-
noted with c, is positive, simple and its corresponding eigenvector is
the only one with all positive entries. By de�nition λ↓1(CΠ) = c.

2. CΠ1k = c1k: this assumption imposes that the Perron-Frobenius eigen-
vector of CΠ is the vector of all ones, 1k. From De�nition 1.11, one can
show that this assumption implies that E[d], the expected average de-
gree, is equal to c. This importantly ensures that the average degree
does not depend on the class; in fact, the expected degree of each node
i belonging to class p equals θi(CΠ1k)p = θic, independently of p.

3. The last condition ensures that exactly k isolated eigenvalues appear
in the spectrum of B.

With this assumption at hand, we are in position to formally state the
main result of [BLM15]

Theorem 3.1 (Spectrum of B on sparse SBM graphs). Let G(V , E) be a graph
generated from the SBM (θ = 1n) and satisfying Assumption 3.1 for c = On(1),
then the following relations are satis�ed with high probability:

For two communities

of equal size

λ
↓|·|
1 (CΠ) = c

λ
↓|·|
2 (CΠ) =

cin − cout

2

∀ 1 ≤ i ≤ k, λ
↓|·|
i (B) = λ

↓|·|
i (CΠ) + on(1),

∀ i ≥ k + 1, |λ↓|·|i (B)| ≤
√

c + on(1).

Both the results of [Krz+13] and [BLM15] only consider the SBM, in which
a homogeneous degree distribution is assumed. The extension to the case of
DCSBM-generated graphs was considered in [GLM17a] for the case of k = 2
communities of equal size.

Theorem 3.2 (Spectrum of B on 2-class sparse DCSBM graphs). Let G(V , E)
be a graph generated from the DCSBM and satisfying Assumption 3.1 for k = 2
and π ∝ 12 and c = On(1), then the following relations are satis�ed:

∀ 1 ≤ i ≤ k, λ
↓|·|
i (B) = λ

↓|·|
i (CΠ)Φ + on(1),

∀ i ≥ k + 1, |λ↓|·|i (B)| ≤
√

cΦ + on(1).
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Figure 3.3: Scatter plot in blue of the real vs. imaginary part of the eigenvalues of
B of Equation (3.1). For this simulation, n = 3 500, k = 3, c = 5,
θi ∼ [U (3, 10)]3. The orange lines are the theoretical prediction corre-
sponding to λ

↓|·|
1≤i≤k(CΠ)Φ (vertical lines) and

√
cΦ (circle).

Note that, Theorem 3.2 holds for two classes of equal sizes, but we believe,
motivated by a vast empirical analysis shown1 in Figure 3.3 and Part II, that
Theorem 3.2 has a straightforward generalization in the case only Assump-
tion 3.1 is veri�ed, so for k ≥ 2 classes of arbitrary size.

With this result we conclude the section on the spectral properties of B
on sparse DCSBM graphs and brie�y move to the dense setting.

3.2.2 dense dcsbm
The main focus of this manuscript is devoted to the sparse regime in which
the graph average degree c = On(1). As it has been previously discussed,
however, the asymptotic concept of sparsity is theory-related and its valid-
ity is debatable on real, �nite size graphs. Even if all intuitions motivating
the non-backtracking matrix as well as the analysis of Section 3.2.1 seem
to have as a strict requirement that G(V , E) has a locally tree-like struc-
ture, it appears that the spectral behavior of B on dense DCSBM graphs is
very much alike the one obtained in sparse graphs. For this reason, the non-
backtracking matrix constitutes a natural bridge between the two regimes
as it will be more extensively commented in Chapter 8.

From Theorem 2.1, it appears that all eigenvalues r of B di�erent from±1
have to satisfy the following relation on an arbitrary graph G(V , E).

Quadratic eigenvalue

problem det
[
(r2 − 1)In + D− rA

]
= 0. (3.5)

1 Here and in the following, the notation θi ∼ [U (a, b)]γ indicates the following procedure: (i)
n random numbers {ri}i=1,...,n are independently drawn from a uniform distribution in a, b;
(ii) each of these number are raised to the power γ; (iii) θi = nri/ ∑i ri , so that E[θi] = 1.
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Figure 3.4: Scatter plot in blue of the real vs. imaginary part of the eigenvalues of
B of Equation (3.1). For this simulation, n = 3 500, k = 3, c = 80,
θi ∼ [U (3, 10)]3. The orange lines are the theoretical prediction corre-
sponding to λ

↓|·|
1≤i≤k(CΠ)Φ (vertical lines) and

√
cΦ (circle).

The solution of Equation (3.5) is known as quadratic eigenvalue problem
[TM01] and allows one to relate the eigenvalues of B to those of the smaller
(unweighted) Bethe-Hessian matrix Hr = (r2 − 1)In + D− rA.

Now, let us �rst consider a graph G(V , E) generated from the SBM with
average degree c going to in�nity faster than log(n). Among the properties
of G(V , E) enumerated in Chapter 1, we recall here that its degree sequence
is almost regular, i.e. that ‖D− cIn‖ = on(c). It can be shown [WW17] that
the values of r solving Equation (3.5) can be approximated by r̃ solving

det[(r̃2 − 1 + c)In − r̃A] = 0. (3.6)

To obtain Equation (3.6) from Equation (3.5), D has been replaced by cIn.
The solution of Equation (3.6) is easier to analyze, since it trivially relates r̃ On regular graphs,

the eigenvalues of B
are directly related to

the ones of A

to the eigenvalues of A:

r̃ =
λi(A)±

√
λ2

i (A)− 4(c− 1)

2
. (3.7)

Considering the simplest case of two classes of equal size (as in Claim 3.1)
the eigenvalues of A satisfy the following identities with high probability
(for instance [CZ20, Proposition 3.1])

λ
↓|·|
1 (A) = c + on(c)

λ
↓|·|
2 (A) =

cin − cout

2
+ on(c)

|λ↓|·|i≥2(A)| ≤ 2
√

c + on(
√

c).

Combining the spectral properties of A, with Equation (3.7) and the fact
that r̃ is a close approximation of r gives the main steps of the informal proof
of the following theorem [CZ20].
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Theorem 3.3 (Spectrum of B on 2-class dense SBM graphs). Let G(V , E)
be a graph generated from the SBM and satisfying Assumption 3.1 for k = 2,
π ∝ 12 and c/log(n) → ∞, then the following relations are satis�ed with

high probability

∀ 1 ≤ i ≤ k, λ
↓|·|
i (B) = λ

↓|·|
i (CΠ) + on(c),

∀ i ≥ k + 1, |λ↓|·|i (B)| ≤
√

c + on(
√

c).

Once again, the enunciation of Theorem 3.3 uses a notation that can be
easily generalized to k > 2. Interestingly, however, the empirical evidence
suggests that Theorem 3.3 can also be generalized to the DCSBM setting, in-
cluding Φ 6= 1 as in Theorem 3.2. We give a visual con�rmation of this claim
in Figure 3.4. With this evidence, let us summarize the two main messages
to retain from this section:

• The proofs to obtain the spectral properties of B in the sparse regime
heavily exploit its tree-like structure. In the dense regime in which the
tree-like hypothesis is not veri�ed, however, the spectral behavior of
B is essentially unchanged, hence resilient to the de�nition of sparsity.

• The proof of Theorem 3.3 requires as a hard constraint the degree con-
centration that characterizes dense SBM-generated graphs. The empir-
ical evidence however suggests that this is a technical hypothesis and
that Theorem 3.3 can be extended also to the DCSBM.

This discussion concludes the properties of sparse DCSBM generated graphs.
We now proceed considering the weighted case.

3.2.3 sparse weighted graphs

Recently, in [SM20] the spectrum of B was studied under very generic hy-
pothesis on weighted graphs. Let us recall their main theorem. In the follow-
ing the notation ‘ ◦ ‘ is used to indicate the Hadamard entry-wise product.

Theorem 3.4 (Spectrum of BUω on weighted random graphs). Let P be a

symmetric random matrix with entries with 0 ≤ Pij ≤ 1 and max(Pij) =

On(1/n). The adjacency matrix of G(V , E) is generated setting its entries to

one independently (up to symmetry) at random with probability

P(Aij = 1) = Pij.

Let W be a symmetric random matrix with independent entries Wij = ωij
and denote with ω = {ωe}e∈Ed , Uω = diag(ω) and L = max(|Wij|).
Further let ρ = λ

↓|·|
1 (P ◦ E[W ◦W]) and r0 be the number of eigenvalues

of P ◦E[W] that are greater than max(
√

ρ, L). The spectrum of the weighted
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non-backtrackingmatrix Bω = BUω veri�es the following identities with high

probability

∀ 1 ≤ i ≤ r0, λ
↓|·|
i (Bω) = λ

↓|·|
i (P ◦E[W]) + on(1)

|λ↓|·|i≥r0+1(Bω)| ≤ max(
√

ρ, L).

Although the formulation of Theorem 3.4 is quite involved, the result it
conveys is simple: the leading eigenvalues of Bω are determined by the ex-
pectation of the weighted adjacency matrix P ◦E[W], while the bulk eigen-
values are con�ned on a circle in the complex plane and are determined by
the variance of the weighted adjacency matrix, P ◦E[W ◦W]. This theorem
can be seen as a generalization of Theorem 3.1 and 3.2 that are obtained for
W = 11T

n and Pij = θiθj
C`i ,`j

n .

With this result, we conclude the properties of the non-backtracking ma-
trix that and brie�y summarize some of the (few) known facts concerning
the closely related Bethe-Hessian matrix.

3.3 the bethe-hessian matrix
Unlike the non-backtracking matrices, few rigorous results exist on the spec-
trum of the Bethe-Hessian matrix, most of which exploit its relation with the
non-backtracking matrix as is Theorem 2.1. First of all, let us recall the (gen-
eralized) Bethe-Hessian matrix of De�nition 2.2

(Hω(r))ij = δij

(
1 + ∑

k∈∂i

ω2
ik

r2 −ω2
ik

)
− rωij

r2 −ω2
ij

This section gives two important claims on the spectrum of Hω(r): (i) the
existence of isolated eigenvalues for DCSBM-generated graphs under Assump-
tion 3.1 and (ii) the position of the smallest bulk eigenvalue of Hω(r) for a
particular choice of r.

The circle theorem

implies for r ∈ R

λ↑1(Hr) ≥ r2 − 1− (r− 1)dmax

r

r2
1

(r
1)

d m
ax dmax 1

Let us �rst consider the unweighted case in which Hω(r) simply reads

Hr = (r2 − 1)In + D− rA.

To understand the origin of isolated eigenvalues in the spectrum of Hr, it is
enough to note that for a su�ciently large r ∈ R, thanks to Gershgorin circle
theorem [HJ12] Hr � 0, i.e. all its eigenvalues are positive, as already com-
mented along Chapter 2, when studying the stability of the paramagnetic
phase of the Ising model. For all r > λ

↓|·|
1 (B), then Hr � 0 since, by de�-

nition r = λ
↓|·|
1 (B) is the largest r for which det[Hr] = 0. At r = λ

↓|·|
1 (B),

one eigenvalue of Hr is equal to zero and it is necessarily the smallest one.
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Figure 3.5: Histogram of the eigenvalues of the Bethe-Hessian matrix Hr in green

for r =
√

c on a SBM random graph with expected average degree c = 5,
k = 3 and n = 5 000. In red, the theoretical curve of the bulk eigenvalue
limiting distribution as in [SKZ14].

Considering r = λ
↓|·|
1 (B)± ε for a small ε, it turns out that, again, all eigen-

values of Hr are non-zero, hence the smallest eigenvalue is isolated. Gener-
alizing this reasoning to the following eigenvalues, from an empirical point
of view, there is a one-to-one correspondence between the p-th largest (real)
eigenvalue of B and the p-th smallest of Hr as stated in the following claim.The relation between

the eigenvalues

of Hr and B Claim 3.2 (Isolated eigenvalues of B and Hr). Let B and Hr be the non-

backtracking and Bethe-Hessian matrices of a realization of a k-class DCSBM

satisfying Assumption 3.1. Then, the k leading eigenvalues of B satisfy

1 ≤ p ≤ k : λ↑p

(
H

λ
↓|·|
p (B)

)
= 0.

Note that this is not a trivial consequence of Theorem 2.1 which only im-
plies that there exists q such that λ↑q(H

λ
↓|·|
p (B)

) = 0. This claim instead goes

deeper, showing an explicit bijection between the largest (isolated) eigenval-
ues of B and the smallest (also isolated) of Hr, setting p = q.

Claim 3.2 concerns only the isolated eigenvalues of B and Hr. The bulk
eigenvalues distribution of the Bethe-Hessian matrix was instead studied
in [SKZ14] with the cavity method [Rog+08] for SBM graphs. The result of
[SKZ14] allows one to obtain µ(λ) solving a �xed point equation. The result
is shown in Figure 3.5. The method of [SKZ14] can be easily generalized to
the DCSBM setting, leading in particular the following claim.

Claim3.3 (Limiting spectral distribution of Hr). LetG(V , E) be a realization
of the DCSBM verifying Assumption 3.1 for c = On(1). Let ρ = λ

↓|·|
1 (B), then

the following relation holds with high probability:

λ↑k+1

(
H√ρ

)
= 0+,
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i.e. , for r equal to the radius of the bulk of B, the bulk of Hr is asymptotically

close to zero (but positive).

The relation between the eigenvalues of Bω and those of Hω(x) (the map-
ping between isolated eigenvalues and the relation the bulk edges) holds as
well in the weighted regime, as evidenced by extensive simulations that will
be more deeply discussed in Part III and Claim 3.2, 3.3 can be generalized
to this setting. The theoretical results on the spectrum of Hω(r) are very
limited comparatively to those obtained for Bω. Nevertheless, Theorem 2.1
together with Claim 3.2 and 3.3 makes it possible to infer some relevant prop-
erties of the spectrum of Hω as a non-rigorous “corollary” to the theorems
characterizing the non-backtracking matrix spectrum.

The relation between

the eigenvectors of

Hr and B
Finally, let us conclude this section on the spectral properties of the Bethe-

Hessian matrix, showing that not only its eigenvalues, but also its eigenvec-
tors are related to those of B.

Proposition 3.1 (Eigenvectors of Bω and Hω(r)). Let Bω be the weighted

non-backtracking matrix of a graph G(V , E) and Hω(r) the corresponding

generalized Bethe-Hessian matrix. Consider an eigenvector g of Bω with eigen-

value λ so that det[Hω(λ)] = 0 and λ 6= |ωij| for all (ij) ∈ E .
Let ψ(g) ∈ Rn

be de�ned as

ψi(g) = ∑
j∈∂i

gijωij.

Then Hλψ(g) = 0, i.e. ψ(g) is an eigenvector of Hλ with zero eigenvalue.

The proof of Proposition 3.1 allows one to prove part of Theorem 2.1 but
its main purpose is to explicitly show the relation between the eigenvectors
of the two matrices.

Proof. From the de�nition of ψ(g) and of Bω we can rewrite

ψi(g) = ∑
k∈∂i

ωikgik = ∑
k∈∂i\j

ωikgik + ωijgij = (Bωg)ji + ωijgij.

Inverting the role of i and j, the following system is obtained

(
λ ωij

ωij λ

)(
gji

gij

)
=

(
ψi(g)

ψj(g)

)
.

Solving this system, gij can be written as a function of ψi(g) and ψj(g):

gij =
1

λ2 −ω2
ij

[
λψj(g)−ωijψi(g)

]
.

Reinjecting this relation in the de�nition of ψi(g) and exploiting the def-
inition of Hω(r), one �nally concludes the proof.
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The proof of Proposition 3.1 concludes the study of the spectral proper-
ties of the Bethe-Hessian matrix. In the next section we relate the results
obtained so far with those introduced in Chapter 2 in which the study of
the spectral properties of Bω was motivated by the Bethe approximation of
Ising-like models on sparse graphs.

3.4 relations with the ising model
Chapter 2 showed that the leading eigenvalue of the non-backtracking ma-
trix plays a crucial role in determining the stability of the paramagnetic
phase in the Ising-like models. In fact, letting βc satisfy

λ
↓|·|
1 (BUβc,J) = 1, (3.8)

according to the Bethe approximation, the paramagnetic phase is stable only
if β < βc. Based on this result, we list some important facts.

Percolation threshold on sparse DCSBM

In Chapter 1 we de�ned the problem of percolation on random graphs as the
critical condition (on the parameters of the generative model of the graph)
needed to ensure, with high probability, the existence of a giant compo-
nent in G(V , E). In Theorem 1.1 we proved in particular that on a DCSBM-
generated graph with expected degree independent of the class label, the
existence of a giant component in G(V , E) appears if and only if cΦ > 1.
Let us detail some consequences of this fact

• Referring to Assumption 3.1, we immediately notice that the condi-
tion λp(CΠ) >

√
cΦ implies cΦ > 1, since λ↓1(CΠ) = c. Conse-

quently, all theorems and conjectures formulated in this chapter hold
for graphs with a giant component.

• According to Theorem 3.2, for a DCSBM-generated graph satisfying As-
sumption 3.1, the leading eigenvalue of the non-backtracking matrix
is asymptotically close to cΦ. The presence of an eigenvalue greater
than one in the spectrum of B hence indicates the presence of a giant
component. The relation between percolation and the spectrum of B
was conjectured already in [KNZ14] in which the authors consider an
arbitrary given graph G(V , E) in which each edge is kept with proba-
bility p and determine the critical p to observe a giant component.

• The absence of an eigenvalue of the non-backtracking matrix greater
than one makes it impossible to de�ne βc. Consider for simplicity an
unweighted graph, for which Equation (3.8) can be rewritten as

λ
↓|·|
1 (B)th(βcJ) = 1.
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Since th(βcJ) < 1 and λ
↓|·|
1 (B) < 1 by hypothesis, βc cannot be

de�ned. This implies that no spontaneous magnetization can be ob-
served is there is no giant component inG(V , E), as shown in [Leo+02].
Furthermore, if cΦ > 1, the transition temperature reads

βc =
1
J ath

(
1

cΦ

)
.

Isolated eigenvectors of Hr

Let us now consider a very important relation between the Bethe free en-
ergy (Equation (2.17)) and the eigenvectors of the Bethe-Hessian and non-
backtracking matrices, referring, once again, to the unweighted case for sim-
plicity. Since B is a non-negative matrix, the eigenvector associated to its
largest eigenvalue (the one de�ning βc as in Equation (3.8)), has entries with
the same sign. Note also that in Section 3.2.1 the guess eigenvector the eigen-
value is chosen with all positive entries. Consequently, exploiting Claim 3.2
and Proposition 3.1 it turns out that all the entries of the eigenvector associ-
ated to λ↑1(H

λ
↓|·|
1 (B)

) have the same sign. Recalling the derivation and physi-
cal interpretation of the Bethe-Hessian matrix we detailed in Chapter 2, the
eigenvectors of Hr are pointing towards the directions in which minima of
the Bethe free energy may appear. The spectral properties of B hence not
only give an expression to the transition temperature βc but also predict
that the stable phase is the ferromagnetic one, in which all spins are aligned.

This observation is more general and can be extended to all eigenvectors
of Hr (as well as to Hβ,J) with a negative eigenvalue. This fundamental in-
tuition will be at the core of our proposed algorithms of Part II and III.

Phase transitions in weighted graphs

In Chapter 2 we showed how the spectral properties of Bω determine the
instability of the paramagnetic phase according to the Bethe approximation.
Yet, even if a phase transition is predicted, no other conclusion was made on
what happens in general when β > βc, i.e. when the system is no longer in
the paramagnetic phase. This is because this question depends generally on
the matrix J. In the particular case in which J = JA with J > 0 only two
phases exist: the paramagnetic and the ferromagnetic. If the system is not in
one phase, then it is in the other. This is well explained by the fact that all
entries of the eigenvector associate with the smallest eigenvalue of Hr are
positive, as we said in the previous paragraph. This property is however a
direct consequence of the fact that J has only positive entries. What happens
in the more general case in which Jij may be negative?

In this case, we should, more precisely, refer to Equation (2.2) as spin glass
rather than Ising Hamiltonian [MPV87]. The study of spin glasses is a vast
�eld to which we have not the ambition to give an introduction here. We
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borrow however an example from the random bond Ising model to relate this
physical problem to the spectrum of Bω.

Let G(V , E) be a realization of a Erdős-Rényi random graph and de�ne
the following Hamiltonian on G(V , E).

H(s) = − ∑
(ij)∈E

Jijsisj,

in which for all (ij) ∈ E , the Jij are independent random variable distributed
according to pδ(J − 1) + (1 − p)δ(J + 1), for 1/2 ≤ p ≤ 1. Let ω =

{th(βJe)}e∈Ed . From Theorem 3.4 we obtain in this case that

λ
↓|·|
1 (Bω) = max

(
c(2p− 1),

√
c
)

th(β).

The transition temperature determining the instability of the paramag-
netic phase hence occurs at

βc = ath
(

1
max(c(2p− 1),

√
c)

)
.

According to the value of p we have two di�erent scenarios, dictated by
whether or not c(2p − 1) >

√
c. This is precisely the condition that de-

termines the appearance of one isolated eigenvalue in the spectrum of Bω,
according to Theorem 3.4. Speci�cally, for large p (the case p = 1 reduces to
the ferromagnetic Ising Hamiltonian considered in the previous paragraph)
the largest eigenvalue of Bω is isolated and the entries of its eigenvector are
positive in expectation and when β = βc there is a transition from the param-
agnetic to the ferromagnetic phase. For c(2p− 1) <

√
c instead, the largest

eigenvalue of Bω belongs to the bulk and the resulting phase is called spin-

glass in which the global magnetization is null, but local order is observed.

This discussion closes Part I which was dedicated to the presentation of
the main technical tools needed to introduce the original contributions of
this manuscript. We now proceed with the �rst part of our contributions,
focused on the problem of community detection in sparse graphs with a
heterogeneous degree distribution.



C O M M U N I T Y
D E T E C T I O N

This part is devoted to the presentation of our contributions
to spectral clustering for community detection. First, Chapter 4
provides an overview to the basics of community detection, with
a particular attention to the problem of inference in graphs gen-
erated from the degree corrected stochastic block model. Spectral
clustering is then reviewed as an e�cient class of algorithms
to perform community detection. Chapter 5 details our main
contribution to the �eld, which is stated in the form of a claim
which naturally leads to an e�cient algorithm for community
detection. Successively, Chapter 6 draws an explicit relation be-
tween the results of Chapter 5 and some works based on the
regularized Laplacian matrix, answering some open questions
related to this popular method for spectral clustering. The prob-
lem of how to e�ciently translate our theoretical results into a
practical algorithm is thoroughly treated in Chapter 7. Finally,
based on our theoretical results, Chapter 8 serves as a conclu-
sion to Part II, with a critical and retrospective look to spectral
clustering for community detection.
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Abstract

This chapter introduces the problem of community detection (CD) on graphs with a

particular attention to the existing contributions approaching CD with spectral clus-
tering (SC) algorithms. To this end, the optimization and the inference approaches to

CD are compared and the main results concerning inference in the degree corrected
stochastic block model (DCSBM) are reviewed. In conclusion, a survey on the state-

of-the-art SC algorithms for CD is provided, underlining the weaknesses of each of the

existing approaches that either are not suited to perform well in the presence of a broad

degree distribution or of a low average degree, two properties that typically character-

ize real-world graphs.
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Part I gave an introduction to graph theory, statistical physics and random
matrix theory. These tools are the fundamental building blocks needed to
describe our contributions. This chapter is a bridge between Part I and the
remainder in which our main results are presented.

61
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In Chapter 1 some properties of real-world graphs have been introduced,
recalling, among others, the recurrent presence of a community structure
[LM+54; MSLC01] according to which nodes in the same class are more
densely connected than nodes in di�erent classes. The problem of commu-

nity detection (CD) can be informally de�ned as the task of determining a
non-overlapping node partition of a graph, unveiling its underlying commu-
nity structure. This de�nition is somewhat tautological given its dependence
on the concept of communities for which there exist no shared consensus in
the scienti�c literature [FH16]. Its clear requirement is that each node has to
be assigned to a unique class. More general, and possibly more realistic, de�-
nitions in which each node may belong to more than one class exist [XKS13]
but will not be considered in the remainder.

Some of the earliest approaches [Sco88] to CD relied on the concept of
cliques, i.e. sub-graphs of G(V , E) in which all nodes are connected among
themselves. This represents the extreme case in which nodes in the sameA graph with k = 2

communities community are maximally connected. Communities, however, can be de-
�ned even under less stringent conditions.

Among the several strategies to perform CD [For10; GN02; New04a; FH16]
in this chapter we consider two in particular. In the �rst, the class structure
is determined solving an optimization problem. This approach is very pop-
ular in the CD literature and inspired some of the earliest works on spectral

clustering (SC) [VL07]. The second method, instead, considers CD as an in-
ference problem from the degree corrected stochastic block model (DCSBM). In
Section 4.1 we brie�y introduce the key ideas of some of the most commonly
deployed de�nitions of CD as an optimization problem, evidencing, in par-
ticular, the major weaknesses of this approach. Subsequently, in Section 4.2,
we review the main results concerning inference in the sparse DCSBM and
discuss how this approach is capable to overcome the limitations of the op-
timization strategy. Finally, Section 4.3 serves as a review to state-of-the-art
methods of SC for CD. A particular attention will be devoted to how each of
the considered algorithm deals (or not) with sparsity, i.e. low average degree
and heterogeneity in the degree distribution. We recall, from Chapter 1, that
these are two very recurrent properties that characterize real graphs and
they generally constitute a big challenge for SC.

4.1 community detection as an
optimization problem

De�ning communities as the solution of an optimization problem consists in
identifying a quality function assessing how satisfactory a given class par-
tition is on a graph. Such function should depend on the partition ` and
the graph G(V , E), in the form of its adjacency matrix A. Some of the ear-
liest choices for the quality function rely on graph cuts, such as the ratio
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cut (RCut) [HK92], de�ned in Equation (4.1) and the normalized cut (NCut)
[SM00], de�ned in Equation (4.2).

QRCut
A (`) =

1
2

k

∑
p=1

1
|Vp| ∑

i∈Vp

∑
j/∈Vp

Aij (4.1)

QNCut
A (`) =

1
2

k

∑
p=1

∑i∈Vp ∑j/∈Vp
Aij

∑i∈Vp ∑j∈V Aij
, (4.2)

where Vp = {i ∈ V : `i = p} is the set of all nodes with label p.

Graph cuts

According to these cost functions, high values of Q•A are obtained when
there are several edges connecting nodes in di�erent communities. The goal
is hence to �nd ` that minimizes Q•A, under the constraint ` 6= 1n, which
prevents all nodes from being assigned to the same cluster.

Another quality function that is very popular in modern CD is themodular-

ity, introduced in [NG04] to evaluate the quality of a community partition:

ModularityQMod
A (`) =

1
4|E | ∑

i,j∈V

(
Aij −

didj

2|E |

)
δ(`i, `j), (4.3)

where we recall that d = A1n indicates the degree vector. The modularity
attributes a large score to con�gurations in which nodes in the same commu-
nity are connected by a greater than expected

1 number of edges. In fact, for
a �xed degree sequence, didj/2|E | is the probability that nodes i and j are
connected if edges were placed at random. The modularity has subsequently
been exploited to de�ne CD algorithms in which the label assignment is ob-
tained maximizing the QMod

A (`) and it is one of the most widely adopted
strategies to CD [Rad+04; New04b; CNM04; Blo+08; TWVE19].

De�ning communities according to a score function may seem a particu-
larly good strategy for two main reasons. The �rst is that the de�nition of
communities does not make any assumption2 on the matrix A and is hence
adapted to any graph. The second is that it gives a common sense de�ni-
tion of communities, expressing a property of a good class assignment. This
approach has, however, strong algorithmic limitations.

• Optimization problems such as NCut, RCut and the modularity maxi-
mization are NP hard3 and only approximate solutions can be obtained
by e�cient algorithms [FH16; VL07]. The pitfalls of the

optimization

approach to CD1 In other words, the modularity compares the realization of the matrix A with a typical real-
ization of a null model, called con�guration model.

2 Or better, does not make any explicit assumption on the matrix A. In the following we will
reconsider this assertion and argue that, matter of factly, the optimization approach makes
some implicit assumptions of A.

3 Although this has not been proved but only conjectured, it is believed that NP-hard opti-
mization problems do not admit a polynomial time solution, i.e. , for a problem of size n, an
exponential in n number of operations is required to obtain the solution [VL91].
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• There exists a large number of structurally di�erent con�gurations
having values of Q•A value very close to the maximum [GDMC10].
Running multiple times an approximate algorithm looking for the op-
timum of Q•A may output similar results in terms of the score, but
corresponding to rather di�erent label assignments.

• The authors of [FB07] showed that, even in the presence of well de-
�ned clusters (such as cliques), optimizing the modularity score over
the number of clusters k, small communities may be joined together,
causing the so-called resolution limit. This is a consequence of the factThe e�ect of the

resolution limit is

well evidenced by

ring of cliques
graph: here the

colour is the

assignment obtained

maximizing the

modularity

that the values of QMod
A are not directly comparable for di�erent val-

ues of k. Albeit the authors of [FB07] only consider the modularity,
they claim that similar e�ects are expected to be seen also when opti-
mizing other cost functions, such as QRCut

A or QNCut
A . To circumvent

this problem, in [AFG08] it was introduced a generalized modularity,
depending on a positive regularizer γ:

QGMod
A (`; γ) =

1
4|E | ∑

i,j∈V

(
Aij − γ

didj

2|E |

)
δ(`i, `j). (4.4)

Tuning the value γ it is possible to identify communities at di�erent
length scales, but this requires an ad hoc solution, depending, in gen-
eral, on the underlying graph.

• From the optimization perspective, communities can be de�ned even
on graphs with no community structure, such as Erdős-Rényi (ER) ran-
dom graphs. This is not only a philosophical problem, related to the
fact that a good CD algorithm should be capable of detecting whether
or not communities are present on the graph. In fact, considering for
instance the modularity, one expects that on ER graphs, any partition
satis�es QMod

A ≈ 0. It has however been shown in [GSPA04] that high
modularity partitions can be found on ER graphs, evidencing that the
modularity maximization may lead to over-�tting.

These problems altogether are severe limitations of the optimization ap-
proach to CD and justify the adoption of a di�erent strategy, based on infer-
ence on the DCSBM. We will show in the next section how Bayesian inference
is able to overcome the aforementioned limitations of optimization and how
it is able to motivate their origin.

4.2 inference in the dcsbm

4.2.1 basic properties
Let us recall that, according to De�nition 1.11, the DCSBM generates the ad-
jacency matrix of G(V , E) setting to one its entries independently (up to
symmetry) at random with probability
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P(Aij = 1|`i, `j) = min
(

θiθj
C`i ,`j

n
, 1
)

. (4.5)

We recall that C ∈ Rk×k is the class a�nity matrix, generating the com-
munity structure of G(V , E), while the vector θ ∈ Rn creates an arbitrary
degree distribution with the expected degree of note i being proportional to
θi. Furthermore, the vector π ∈ Rk is de�ned so that πp is the expected
fraction of nodes with label p and we denote with Π = diag(π). We work
under Assumption 3.1, according to which 1k is an eigenvector of CΠ with
eigenvalue c, representing the (class-independent) expected average degree.

Given the generative model of Equation (4.5) the labels are indisputably
de�ned by the vector ` and the number of classes by k. The goal of CD given
a DCSBM-generated graph is hence to infer `. Let us de�ne the overlap to
characterize more formally CD on DCSBM graphs.

Two permutations of

the same solution

De�nition 4.1 (Overlap). Let `, ˆ̀ ∈ {1, . . . , k}n
be two vectors and P` the

set of all permutations of `. The overlap between ` and
ˆ̀
is de�ned as

Qov(`, ˆ̀) =
1

1− 1
k

max
p∈P`

[
1
n

n

∑
i=1

(
δ( ˆ̀ i, p(`i))−

1
k

)]
.

In words, the term 1
n ∑n

i=1 δ( ˆ̀ i, p(`i)) represents the fraction of correctly
labelled nodes; the term 1/k, instead is the probability that δ( ˆ̀ i, p(`i)) = 1 if
the entries of ˆ̀ were randomly assigned. For all `, the function QOv(`, ˆ̀) is
between 0 (random label assignment) and 1 (perfect label assignment). Note
that, since we are taking the maximum over all label permutations, Qov can
never be negative.

The overlap being de�ned, CD can be formulated as the task of �nding a
partition ˆ̀ so that Qov(`, ˆ̀) > 0 [Abb17]. In words this means to infer `
better than random guess.

Remark 4.1 (Detection in sparse graphs). Note that on sparse DCSBM-generated
graphs, with high probability, min

i
(di) = 0, i.e. there are isolated nodes that

cannot be classi�ed better than random guess [MNS14]. For this reason, when

considering the sparse setting, it is most appropriate to talk about detection and

not exact recovery that is structurally unfeasible.

An example of a

disassortative graphThe class structure of G(V , E) is simply determined by the matrix C, im-
posing that Caa > Cab for b 6= a. This results in an adjacency matrix in
which fewer edges connect nodes in di�erent classes, as required by the in-
tuitive de�nition of communities. Note however that, even though it is a
typical requirement that the diagonal elements of C are greater than the o�-
diagonal ones, the DCSBM can also be used to describe disassortative commu-
nity structures. In this case groups of nodes are identi�ed as a class because
they repel (rather than attract) each other. As a concrete example one may
think of the vertices of a graph as the words contained in a text with edges
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if two words appear next to each other: on this graph, adjectives and nouns
represent two disassortative communities [NG04]. In the case of two classes,
this corresponds to imposing Caa < Cab. While the de�nition of a disassor-
tative community structure with the DCSBM is possible, in the remainder we
will mainly focus on the assortative case.

Coming to the details of CD as an inference problem, the probability dis-
tribution of the labels ` given the graph observation A can be retrieved with
a Bayesian approach. In particular

Bayes’ theorem
Posterior︷ ︸︸ ︷
P(`|A) =

Likelihood︷ ︸︸ ︷
P(A|`)

Prior︷ ︸︸ ︷
P(`)

P(A)︸ ︷︷ ︸
Evidence

.

The prior P(`) encodes pre-existing information on the class label assign-
ment. We suppose nothing is known about the community structure and
consequently the uniform `-independent prior is chosen. The likelihood is
obtained from Equation 4.5, while the evidence is an `-independent normal-
ization constant. For the DCSBM, assuming θiθjC`i ,`j /n < 1 for all i, j, the
posterior distribution reads:

P(`|A) ∝ ∏
(ij)∈E

θiθj
C`i ,`j

n
· ∏
(ij)/∈E

(
1− θiθj

C`i ,`j

n

)

∝ exp

 ∑
(ij)∈E

log
(

C`i ,`j

)
+ ∑

(ij)/∈E
log

(
1− θiθj

C`i ,`j

n

) .

(4.6)

Obtaining the marginal node probability from Equation (4.6), one can as-
sign to each node the label maximizing the node marginal [Pei19]. A possi-
ble way to accomplish this task is to sample from the distribution (4.6) using
Monte Carlo Markov chains [Pei14a]. The Bayes optimal procedure is, how-
ever, typically quite expensive from the computational viewpoint. Luckily,
for sparse graphs, the asymptotically exact expression of Pi(`i|A) can be
e�ciently obtained using the belief propagation (BP) algorithm introduced
in Chapter 2. The node marginals are obtained solving the following systemBP for CD

of equations4 [Dec+11, Eq. 26, 27, 28]:

Pi(`i|A) =
π`i

Zi
e−h`i ∏

j∈∂i
∑
`j

C`i ,`j ηij(`j) + on(1) (4.7)

ηji(`i) =
1

Zji
π`i e

−h`i ∏
k∈∂i\j

∑
`k

C`k ,`i ηik(`k) (4.8)

4 Note that the �eld h`i
comes from the contribution of all the "non edges" appearing in Equa-

tion (4.6) and this expression speci�cally holds in the sparse SBM.
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h`i =
1
n ∑

k∈V
∑
`k

C`i ,`k P(`k|A). (4.9)

Note that Equations (4.7, 4.8, 4.9) are obtained for the stochastic block

model (SBM) (which we recall corresponds to the choice θ = 1n) but the
result can be easily generalized to the DCSBM. Using BP propagation it is also
possible to iteratively learn the parameters C and π that cannot be supposed
to be known in advance.

Remark 4.2 (The estimation of k). In [Dec+11] the authors explain how to

estimate the number of communities k if not known in advance. The procedure

consists in running BP multiple times for di�erent values of k and keeping the

one minimizing the Bethe free energy. As shown in [Pei19], however, when the

underlying graph is very far from a realization of the SBM – like a ring of cliques

– the estimate of k may become inaccurate, su�ering from a resolution limit.

The computational complexity of BP for CD scales as O(|E |k2) [Pei19],
making BP computationally e�cient in the sparse regime in which c =

On(1) (or, equivalently, |E | = On(n)). The main interest in BP, however,
comes from the fact that it is asymptomatically exact in the sparse regime.
Studying the convergence of BP allowed the authors of [Dec+11] to formu-
late some deep conjectures on the theoretical feasibility of inference in the
sparse SBM, claiming that if BP is not capable of obtaining a non-zero overlap
partition, then no other e�cient algorithm can.

4.2.2 detectability threshold

One of the most striking results of [Dec+11] concerns the conjecture of the
existence of a detectability threshold5 when inferring the labels. Consider the
case of k communities of equal size with C = cout1k1T

k + (cin− cout)Ik. The
expected average degree is c = (cin + cout(k− 1))/k. We de�ne α as:

α =
c− cout√

c
. (4.10)

The authors of [Dec+11] conjecture that for α > αc = 1 there exist e�-
cient algorithms that are capable to perform CD, obtaining a non-zero over-
lap. In particular, α > αc is the condition needed by BP to converge towards
an informative �xed point. What happens when α < αc is slightly more in-
volved. In particular, for any k, BP is not (asymptotically) capable of achiev- Algorithmic and

information theoretic

thresholds

ing an overlap greater than zero if a random initialization is chosen. It is
supposed that no other e�cient algorithm (i.e. with computational complex-
ity polynomial in n) can achieve this task. Hence, α = αc is the algorithmic

threshold of CD for the SBM. Yet, under proper conditions, it is observed that

5 Note that the existence of a detectability threshold had been previously conjectured in [RL08]
in which the authors, however, overestimate the size of the undetectable region.
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Figure 4.1: Schematic representation of the phase transition in the sparse SBM. Pic-
ture adapted from [Moo17, Figure 7].

for an initialization su�ciently close to the informative �xed point, BP ob-
tains a positive overlap even for α < αc. When BP cannot obtain a positive
overlap even when initialized to the ground-truth assignment, we are at the
information theoretic threshold below which there is no way to distinguish a
SBM from an Erdős-Rényi (ER) random graph.

In the case of k = 2, 3 communities it is claimed that the algorithmic and
information theoretic thresholds coincide, hence that for α < αc no algorithm
can (asymptotically) obtain a positive overlap . For k ≥ 4 on disassortative
graphs and k ≥ 5 on assortative ones, multiple transitions exist:

• α < αd: if BP is initialized to the ground truth assignment, it converges
to the factorized �xed point Pi(`i) = 1/k: detection is unfeasible.

• αd < α < αh: if BP is initialized to the ground truth assignment, it con-
verges to a solution with positive overlap. However, there is no way
to distinguish this solution from any other: detection is unfeasible.

• αh < α < αc: if BP is initialized to the ground truth assignment, it
leads to a partition with positive overlap which is distinguishable from
all others. Detection is feasible, but it requires an exponential time.

Figure 4.1 summarizes the phase transitions. Since its appearance, the con-
jectures of [Dec+11] conveyed a lot of attention and several authors con-
tributed to give them a rigorous proof. In particular, [Mas14; MNS18] fo-
cused on the SBM for k = 2 communities, independently showing that detec-
tion can be e�ciently obtained when α > αc. In the same setting [MNS15]
instead proved the negative part of the conjecture, i.e. that detection is im-
possible when α < αc. Moreover, [MNS14] proved that a modi�ed version
of BP maximizes the fraction of nodes labelled correctly for some α > αc.
The extension of the possibility part for k > 2 was proved in [AS15], while
in [CO+18] the conjecture was proved for disassortative graphs. Finally, the
results of [Dec+11] have been extended to the k = 2 class setting on DCSBM-
generated graphs. In this case α should be re-de�ned as α = (c− cout)

√
Φ
c ,

where we recall that Φ = E[θ2
i ]. In [GLM15] it was shown that detectability

is impossible if α < αc = 1, while the positive part was proved in [GLM17a].
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4.2.3 optimization vs model based: a sta-
tistical physics perspective

To conclude this section, let us relate the model-based and optimization-
based approaches.

As it was described in Section 4.1, de�ning communities as the solution to
an optimization problem makes a requirement on what a good class partition
should be like, with no hypothesis on the underlying graph. This makes it a
seemingly good way of performing CD on arbitrary graphs. On the opposite,
designing an algorithm for CD inspired from DCSBM gives a good mathemat-
ical control and, in some cases, information theoretic guarantees. Neverthe-
less, the model-based approach relies on some assumptions that are not nec-
essarily veri�ed on arbitrary graphs: recall for instance the locally tree-like
structure of sparse DCSBM graphs.

This may lead to thinking of the inference approach as a mere mathe-
matical exercise. This section on the opposite argues that the model-based
approach should be generally preferred to the optimization one. In fact, the
latter actually relies on some implicit hypothesis on the matrix A and its
limitations can be clearly interpreted from a Bayesian perspective.

To simplify the discussion, let us consider the k = 2 class DCSBM. In this
case, letting σi = 1 if `i = 1 and σi = −1 if `i = 2, the posterior probability
P(`|A) ≡ P(σ|A) of Equation (4.6) can be rewritten as

P(σ|A) =
1
Z

exp

 ∑
(ij)∈E

βσiσj −∑
i∈V

hi(σ)σi

 ≡ e−βH(σ)

Z
, (4.11)

where β = 1
2 log

(
cin
cout

)
and hi(σ) is a local magnetic �eld due to non-

edges that prevents all nodes from ending up in the same class. Equation (4.11)
precisely corresponds to the Boltzmann distribution for the Ising Hamilto-
nian with local �elds, depending on the con�guration σ. The Bayesian ap-
proach is equivalent to �nding the magnetization m = 〈s〉β, associated to
the Hamiltonian H(σ). Finding the ground state of H(σ), i.e. the con�gu-
ration σ corresponding to its minimum, instead is equivalent to �nding the
maximum of the generalized modularity QGMod

A (`; γ), for a proper value of
γ, as shown in [New16].

This observation puts us in position to make two very important remarks.
The most questionable assumption of the DCSBM is that of generating edges
independently at random. In terms of log-likelihood, this translates into a
sum over all graph edges, as shown in Equation (4.11). This sum is the same
appearing in QGMod

A , QMod
A , QRCut

A and QNCut
A that can be associated to a

generative model (di�erent from the DCSBM) in which the edges of G(V , E)
are also generated independently at random, evidencing how the functions
Q•A rely on some “silent” assumptions on the matrix A.
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Furthermore, from a statistical physics perspective, the functions Q•A (even-
tually taken with a negative sign) can generally be considered as Hamiltoni-
ans, i.e. cost functions associated to a given label con�guration. In all cases
(also for the DCSBM), the Hamiltonian is what de�nes communities from ami-

croscopic perspective. Stating which de�nition is the best is a di�cult task
that we are not going to investigate. However it should be remarked that
what is essentially di�erent in the optimization and inference approaches
is how to retrieve the communities from the Hamiltonian: in one case they
are obtained from the marginals of the Boltzmann distribution, in the other
from the ground state energy.

At this point the natural question to ask is “what is best?”. Finding a de�ni-
tive answer to this puzzle is beyond the scope of this manuscript. The answer
is likely to be problem-dependent [Pei19] and, although we do not claim to
provide universal arguments, we give two reasons why, at least in our set-
ting, the Bayesian approach should be preferred.

• The Hamiltonian, or equivalently the cost Q•A is what de�nes the con-
cept of communities. The optimization approach, however, only takes
into account the minimum of the Hamiltonian, disregarding the rest
of its pro�le. Consider two functions Q•A, one being convex and the
other having multiple minima with similar values of Q•A(`). These
two settings are clearly di�erent: in the �rst the label assignment is
uniquely de�ned by minimum of Q•A, whereas, in the second, several
con�gurations could be considered as almost equally good commu-
nity structures. Taking only the minimum of the Hamiltonian means
to disregard all other con�gurations that may have, instead, a poten-
tially great importance. The Bayesian approach does not consider ex-
clusively the minimum of Q•A, but the whole energy landscape, giving
a generally richer description of the problem.

• The solution of the optimization problem does not involve the con�-
dence that one can have in the solution. To get more practical, consider
a set of realizations of the DCSBM with the same ground-truth labels.
Running an optimization algorithm on each of these graphs indepen-A node partition of

an ER random graph

with QMod ≈ 0.25
dently will likely lead to di�erent partitions, especially as the value of
α decreases.6 Using the Bayes rule to determine the node marginals,
instead, gives in expectation very similar results of the marginals, mak-
ing this method resilient to noise. This can be well understood by
taking a closer look at Equation (4.11). For hard detection problems,
β → 0, leading the system into the paramagnetic phase in which no
clustering can be made. The Bayes approach hence correctly predicts
the absence of communities in Erdős-Rényi (ER) random graphs. As
the problem gets easier, instead, β increases and the marginals will
progressively tend to one. In the extreme case of β → ∞ (which is
the easiest possible scenario), the magnetizations 〈σ〉β corresponds

6 Recall that α is the parameter determining the hardness of CD in the DCSBM.
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to the ground state con�guration. The optimization approach hence
boils down to the (overly optimistic) assumption that the ground-truth
label vector corresponds to the minimum of the Hamiltonian, com-
pletely disregarding the contribution of the noise. This leads, in gen-
eral, to over-�tting [ZK16], explaining why the modularity maximiza-
tion leads to high scores on completely random graphs.

This concludes our introduction to the DCSBM and more generally to CD.
We now proceed with a short review of some of the most in�uential meth-
ods for SC for CD, including both those inspired by the optimization and the
Bayesian approaches. The literature on SC is incredibly vast and the follow-
ing review considers a limited sample of all the existing contributions. The
main criterion motivating the inclusion of a particular algorithm in the fol-
lowing section concerns whether or not it is equipped with a deep theoretical
and algorithmic explanation.

4.3 spectral clustering: related
works

Spectral clustering is a popular method to perform CD and has deep relations
with both the optimization and the Bayesian approaches. Algorithm 4.1 de-
scribes the typical steps of SC for CD. Not all SC algorithms can be written in
the form of Algorithm 4.1 that has the sole purpose of providing the reader
a practical reference.

Taking a closer look at Algorithm 4.1, �rst note that k is required as an
input. It has been extensively discussed that determining a good value for k
is one of the big challenges of CD and SC is not an exception. “Algorithm 0” of SC

Secondly, Algorithm 4.1 relies on the fact that some of the eigenvectors
of an appropriate graph matrix representation M are informative with re-

Algorithm 4.1 : Typical SC algorithm on a graph with k classes
Input : G(V , E), k
Output : Estimated label community vector ˆ̀ .

1 begin

2 Choose the matrix M ∈ Rn×n, a suited graph representation;
3 Find the k largest (or smallest) eigenvalues of M and stack the

corresponding eigenvectors in the columns of a matrix
X ∈ Rn×k ;

4 (Optional) Normalize the rows of X ;
5 Estimate community labels ˆ̀ as the output of k-means performed

on the points in Rk de�ned by the rows of X ;
6 return

ˆ̀ .
7 end
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Algorithm 4.2 : Lloyd algorithm for k-means [Llo82]
Input : Input data matrix X ∈ Rn×demb ; k: number of clusters
Output : Label assignment ˆ̀ ∈ {1, . . . , k}n

1 begin

2 Initialize the vector `;
3 Set t← 0 and `(t) ← `;
4 while Convergence is not met do

5 µ
(t)
a as in Equation (4.13) for 1 ≤ a ≤ k;

6 `
(t+1)
i ← arg min

a=1,...,k
‖Xi,• − µ

(t)
a ‖2 for 1 ≤ i ≤ n;

7 t← t + 1
8 end

9 return `(t−1).
10 end

spect to the class structure of the graph. The arguments motivating and in-
terpreting the existence of such eigenvectors are treated in the following sec-
tions and ultimately characterize each SC algorithm. Note that, from a prac-
tical viewpoint, the fact that these informative eigenvectors are in largest or
smallest position is of fundamental importance, otherwise one would need
to compute all eigenvectors and choose the most informative ones, with a
very time consuming routine. However, as it will be made clear in the fol-
lowing, having k informative eigenvectors in dominant position cannot be
given for granted, especially on sparse graphs.

The choice of the matrix M is perhaps the most fundamental task to de-
sign a SC algorithm. The small dimensional embedding X obtained from M
must be a suited input to the �nal small dimensional clustering step. Co-
herently with the majority of the SC literature [CZC18], we systematically
perform this step with the k-means algorithm, which we now summarize.

Given the input matrix X, k-means assigns the labels ˆ̀ as the solution to
an optimization problem formulated as follows:

The k-means
algorithm

ˆ̀ = arg min
`

k

∑
a=1

∑
i∈V`a

‖Xi,• − µa‖2 (4.12)

µa =
1
|V`

a |
∑

i∈V`a

Xi,•, (4.13)

where V`
a = {i : `i = a} is the set of all points with attributed label

equal to a and Xi,• is the i-th row of X. The term µa is the average of all the
rows with label a and is the centre of the cluster. Equation (4.12) attributes
label a to node i if µa is the closest centre to Xi,•. Note that, although not
denoted explicitly, the term µa depends on `. This in is an NP-hard optimiza-
tion problem for which an approximate solution is typically searched using
Lloyd algorithm [Llo82], detailed in Algorithm 4.2. The labels are initialized
(for example with a random assignment or with some more sophisticated
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technique [AV06]) then the centres and the labels are iteratively updated, as-
signing each node to the closest centre. The complexity of Lloyd algorithm
scales as O(nkdemb) [SMR08].

With Lloyd’s algorithm, there is no guarantee that the optimum of Equa-
tion (4.12) is reached and the output will depend, in general, on the initializa-
tion ` (step 2 of Algorithm 4.2). To cure this �aw, k-means is commonly run
multiple times and the solution reaching the lowest cost in terms of Equa-
tion (4.12) is kept.

Furthermore, note that the k-means objective function only involves the
distances from the centres of each clusters. As a consequence, in the con-
text of SC for CD, a good input for k-means is so that the distance between
the points in the embedded space ideally depends only on the node’s label.
As we will comment in the following, however, the presence of a heteroge-
neous degree distribution must be accounted for, because it typically takes
a (deleterious) role in determining the embedding.

With the basics on k-means being established, we now turn to a detailed
description and justi�cation of some state-of-the-art SC algorithms for CD.

4.3.1 classical methods

The �rst contribution to SC for CD dates back to [Fie73] in which, for k = 2
communities, it was proposed to reconstruct communities using the eigen-
vector corresponding to the second smallest eigenvalue of the combinatorial

graph Laplacian matrix L = D− A. It was then shown [VL07, for instance]
that this eigenvector provides a relaxed solution of the RCut problem. In
particular, let f be de�ned as follows

( f`)i =


√
|V2|
|V1| if `i = 1√
|V1|
|V2| if `i = 2.

(4.14)

Then, it can be shown [VL07] that
SC provides a

relaxation of the

graph-cut

optimization

problemsQRCut
A (`) ∝ f T

` (D− A) f`. (4.15)

The relaxation consists in optimizing Equation (4.15) considering f` ∈
Rn, instead of having binary entries as in Equation (4.14). Then the labels
can be estimated taking the sign of u, the eigenvector associated to the small-
est eigenvalue of L = D− A, subject to the constraint u ⊥ 1n. This condi-
tion is imposed to prevent all nodes from being set in the same class. Luck-
ily, 1n is an eigenvector of L, precisely the one associated to its smallest
eigenvalue, hence u is the eigenvector associated to λ↑2(L), i.e. to the second
smallest eigenvalue. The result can be generalized to k > 2. Referring to
Algorithm 4.1, one has M = L, the informative eigenvectors correspond to
the smallest eigenvalues and step 4 is not performed.
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X , 1
X

,2

Class 1
Class 2

X , 1

Figure 4.2: Scatter plot of the �rst vs second column of the matrix X containing
the leading eigenvectors of Lsym = D−1/2 AD−1/2. The colour code in-
dicates the ground-truth labels, while the sizes of the points are propor-
tional to the node degree. Left: homogeneous degree distribution.Right:
heterogeneous degree distribution with θi ∼ [U (3, 10)]3. For both plots
n = 5 000, k = 2.

Remark 4.3 (Multiplicity of the zero eigenvalue). It can be shown [VM10]

that on a connected graph, λ↑2(L) (also known as Fiedler eigenvalue) is strictly
positive. On a disconnected graph, instead, the multiplicity of the 0 eigenvalue

equals the number of connected components of G(V , E), ncc and the corre-

sponding eigenvectors can be written as v(1≤a≤ncc)
i = Ii∈Va , where Va are the

nodes belonging to the a-th connected component. Running Algorithm 4.1 with

M = L and k = ncc returns a label assignment in which communities are

identi�ed by the connected components of the graph.

A similar result justi�es the exploitation of the normalized graph Laplacian

matrices (Lrw = D−1A and Lsym = D−1/2AD−1/2) that provide a relaxed
solution of the NCut problem [VL07]. In [SM00], M = Lrw, the informative
eigenvectors correspond to the k largest eigenvalues and step 4 is again not
performed. Similarly to Remark 4.3, the multiplicity of the eigenvalue 1 is
equal to the number of connected components in G(V , E), in fact

(D− A)v = 0 =⇒ D−1Av = v.

The matrix Lrw is also called random walk Laplacian because its entry
Lrw

ij = 1
di

Aij is the probability that a random walker transitions from node i
to node j. The choice M = Lsym is instead proposed in [NJW01a] in which
the informative eigenvectors correspond to the k largest eigenvalues and
step 4 is performed. Note that the matrices Lrw and Lsym have the same set
of eigenvalues and, the eigenvectors are also trivially related, in fact

D−1Ax = λx

D−1A D−1/2y︸ ︷︷ ︸
x

= λ D−1/2y︸ ︷︷ ︸
x

D−1/2AD−1/2y = λy.

Strictly speaking, only the eigenvectors of Lrw and not those of Lsym pro-
vide a relaxed solution to the NCut problem. In several contexts, however,
the use of Lsym is preferred because it is Hermitian.
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From a graph-cut point of view, all three Laplacian matrices L, Lsym, Lrw

are able to create a node embedding which depends on the community la-
bels and that thus justi�es Algorithm 4.1 for the aforementioned choices of
M. We recall, however, that a good embedding for k-means should also be
independent from the degree distribution. Figure 4.2 compares the embed-
ding obtained with the matrix Lsym in the case of a homogeneous degree The e�ect played by

the degrees in

determining the

small dimensional

node embedding

distribution (on the left) and of a heterogeneous degree distribution (on the
right). The size of each dot is proportional to the degree of the corresponding
node, clearly evidencing that nodes with a small degree tend to be mapped
to nearby points, potentially hampering the performance of k-means. It is
for this reason that step 4 of Algorithm 4.1 is performed in [NJW01a], prior
to k-means, so to obtain an embedding unspoiled by the degrees. This is not
needed instead for the embedding obtained from Lrw that is naturally inde-
pendent from the degree distribution [MRD21].

Concluding, both the algorithms of [NJW01a] (based on Lsym) and of
[SM00] (based on Lrw) consider and solve the problem induced by the pres-
ence of a heterogeneous degree distribution in the graph. On the opposite,
the algorithm of [Fie73] (based on L) does not and its performance is conse-
quently hampered on graphs with an arbitrary degree distribution.

Another classical choice of matrix M is in [New06], which is based on
a relaxation of the modularity maximization problem. In this case M is the
modularity matrix Mmod = A− ddT

2|E | . For k = 2 communities, the algorithm
of [New06] �nds the labels according to the sign of the leading eigenvector
of Mmod, while for k > 2 the procedure is slightly more involved and it
deviates from the general structure of Algorithm 4.1. The matrix Mmod is a
rank one perturbation to the adjacency matrix, whose leading eigenvector Relaxation of the

modularity

maximization

is strongly correlated (in the su�ciently dense regime) to the degree vector:

(Ad)i = ∑
j∈∂i

dj = dic + O(
√

di). (4.16)

In the spectrum of Mmod, the leading eigenvector of A (corresponding to
a ferromagnetic con�guration in which all entries have the same sign) corre-
sponds to an eigenvalue close to zero. All other eigenvectors, being approx-
imately orthogonal to d, are almost unperturbed. Consequently, the leading
eigenvector of Mmod is strongly related to the eigenvector associated to the
second largest eigenvalue of A.

The choice M = A is thoroughly studied in [LR+15] in which SC is per-
formed on the k leading eigenvectors of the adjacency matrix. To keep into
account for the degree heterogeneity, a similar approach is considered in
[Jin+15] for DCSBM-generated graphs. In this case, a modi�ed version of step
4 in Algorithm 4.1 is performed, normalizing each row of X by Xi,1.

Many results justifying the earlier or more sophisticated SC algorithms
exist in the dense regime [LR+15; CLV04; RCY+11; MRD21; AC17; GLM17b],
also in the case for graphs with broad degree distributions. These are moti-
vated by good concentration properties of the spectra of these matrices that
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Figure 4.3: Empirical eigenvalue distribution of Lsym on SBM-generated graphs with
k = 2. Top: dense regime, cin = 0.06n, cout = 0.02n. Bottom: sparse
regime, cin = 6, cout = 2. For both simulations n = 5 000.

can be predicted and studied with random matrix theory (RMT). However, as
anticipated, real networks tend instead to be sparse and the aforementioned
SC algorithms often perform poorly for practical applications. The origin of
the problem if well understood comparing the two plots in Figure 4.3. In the
top plot, the spectrum of Lsym (which we recall is the same as Lrw) is shown
for a dense SBM-generated graph, clearly evidencing that the two largest
eigenvalues are isolated. The bottom plot shows the spectrum of the same
matrix for a sparse SBM with c = On(1). In this case, the informative eigen-
value of Lsym is “swallowed” in the bulk of uninformative eigenvalues and
running Algorithm 4.1 for M = Lrw does not lead to a good community
partition. The spreading of the bulk is not limited to the Laplacian matrices,
but characterizes also the adjacency matrix. In [BGBK+19; BGBK+20] it wasSpectrum of A for

c = On(1)
compared to the

limiting distribution

in the dense regime

in blue

2 1 0 1 2
/ c

0.0

0.5

1.0

1.5

A c
(

)

recently shown for the SBM and c = on(log (n)) that the spectral measure of
A does not tend to a limit distribution and that the largest eigenvalue corre-
spond to the nodes with highest degree, and not to the community structure.

It is important to underline that the spreading of the bulk is not only re-
lated to the asymptotic de�nition of sparsity. As a practical example, we con-
sider the political blogs network [AG05] representing relations7 between we-
blogs of USA politicians during 2004 elections. This network is particularly
interesting as a benchmark for CD because a ground-truth label assignment
can be de�ned according to whether the politician is liberal or democrat.
Running the algorithms of [SM00] or [NJW01a] fails completely in recov-
ering the ground truth assignment, since the vector x2 is completely unin-
formative, as shown in the left plot of Figure 4.4. It was however noticed in
[JY+16] that the eigenvector x3 (associated to the third largest eigenvalue)
is instead strongly correlated to the ground truth labels, as shown in the
right plot of Figure 4.4. This is a practical example in which the informa-
tive eigenvector is swallowed in the uninformative bulk. In this particular
case it is still easy to �nd but in more general settings, losing track of its

7 Note that this network is undirected but in Figure 4.4 we consider a symmetrized version of
the adjacency matrix.
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Figure 4.4: Eigenvectors of Lrw = D−1 A on the (symmetrized) political blogs net-
work [AG05]. Left: eigenvector associated to the second largest eigen-
value; Right: eigenvector associated to the third largest eigenvalue. The
background color indicates the ground-truth labels.

precise position is a practical obstacle for SC. Besides, losing the isolation of
informative eigenvalues, the associated eigenvectors tend to merge with the
eigenvectors associated to close-by (non-informative) eigenvalues.

4.3.2 spectral clustering in sparse graphs
Finding e�cient algorithms for SC in sparse graphs has been a challenge to
which the scienti�c community has devoted a lot of attention in the latest
years. One prominent line of research studied the positive e�ect that regu-
larization has on SC. In particular, it was observed that using Dτ = D + τ In

and Aτ = A + τ1n1T
n in place of D and A, much better concentration prop-

erties are achieved in sparse graphs and informative eigenvalues are restored
to their dominant position [Ami+13; JY13; LR+15; LLV18; LLV15]. A partic-
ularly interesting method in this direction is proposed in [QR13] which uses Regularized SC

the regularized symmetric reduced Laplacian matrix Lsym
τ = D−1/2

τ AD−1/2
τ ,

for the heuristic choice τ = d̄, the average degree. In terms of Algorithm 4.1,
the algorithm proposed in [QR13] sets M = Lsym

τ , searches for the k eigen-
vectors corresponding to the k largest eigenvalues of M, and then performs
the normalization step 4 on the rows of the resulting matrix X to cope with
an arbitrary node degree distribution. In [ZR18] it was shown that also the
algorithm of [QR13] can be understood as a relaxation of an optimization
problem, called CoreCut.

Generally speaking, the aforementioned works show that regularization
improves the concentration properties of random matrices with low average
degree. In all cases, however, the authors consider amoderately sparse regime

in which the average degree goes (asymptotically) to in�nity at a slow rate.
The main theorems of these papers hence do not hold in the truly sparse
regime in which c = On(1). Besides, theory often suggests that large val-
ues of the regularizer τ should be preferred to small ones but small values
of τ seem to perform better in practice [JY13; QR13]. In any case, regard-
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less the lack of full theoretical justi�cation, the algorithm of [QR13] can be
considered by all means as state-of-the-art in terms of performance, dealing
with both sparsity (meant in this case as low average degree) and the broad
degree distribution that typically characterizes real graphs.

The earliest contributions to the theory of SC in truly sparse graphs came
from statistical physics intuitions. In particular, the authors of [Krz+13] pro-
posed an algorithm based on the non-backtracking matrix (De�nition 1.8) for
detection in the SBM. We recall from Chapter 2 that the matrix B is obtained
from the linearization of BP equations that provide, in this case, the asymp-
totically exact solution to inference in the SBM. The algorithm of [Krz+13]Statistical physics

methods for CD cannot be expressed exactly in terms of Algorithm 4.1, since the size of B is
|Ed| and not n. However, the p-th column of X ∈ Rn×k is obtained from the
vector ψ(gp), where gp is the eigenvector of B associated to the p-th largest
eigenvalue and

(
ψ(gp)

)
i = ∑k∈∂i gp,ik.

From Claim 3.1, the authors of [Krz+13] conjectured that, if α > αc (Equa-
tion (4.10)), i.e. if there exists a polynomial-time algorithm capable of per-
forming detection, then the vectors8 {ψ(gp)}p=2,...,k are correlated to the
community structure and running k-means on the rows of X gives a label
assignment with positive overlap. In order to show more clearly the origin
of this claim, let us consider the case k = 2. According to Claim 3.1, the
eigenvector of B associated to its second largest eigenvalue is correlated toThe spectrum of B
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ag
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the class structure, with E[g2,ij] = σj and so is ψ(g2). The corresponding
eigenvalue is λ

↓|·|
2 (B) = cin−cout

2 + on(1), while the radius of the bulk is√
c + on(1). It is easy to check that the informative eigenvalue is isolated

(λ↓|·|2 (B) >
√

c) whenever α > αc. This result is of fundamental importance
because it de�nes a spectral algorithm in which the algorithmic and the de-
tectability thresholds coincide. The spectral algorithm of [Krz+13] was the
�rst (and still one of the few) obtaining this very powerful result. As we men-
tioned already, the conjectures of [Krz+13] have later been formally proved
[Mas14] and extended also to the DCSBM setting [GLM16] in which the non-
backtracking reaches as well the information-theoretic threshold.

A closely related algorithm is the one proposed in [SKZ14] which in-
stead uses the eigenvectors attached to the smallest eigenvalues of the Bethe-
Hessian matrix Hr. Recalling Proposition 3.1, the vector ψ(gp) used in [Krz+13]
satis�es the following relation:

H
λ
↓|·|
p (B)

ψ(gp) = 0,

i.e. it is an eigenvector with zero eigenvalue of the Bethe-Hessian matrix for
r = λ

↓|·|
p (B). The matrix Hr has some important numerical advantage with

respect to B: it is smaller in size and it is Hermitian. However, translating the
algorithm of [Krz+13] in terms of the Bethe-Hessian requires to compute the
k leading eigenvalues of B, annulling the advantage of using Hr. In [SKZ14]

8 Note that for gp=1 is the Perron-Frobenius eigenvector which is irrelevant for CD.
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the authors determined a unique value of r =
√

λ
↓|·|
1 (B), guaranteeing that

the k smallest eigenvalues of Hr are isolated for α > αc. As a by product,
the authors also showed that the number of negative eigenvalues of Hr for

r =

√
λ
↓|·|
1 (B) is an estimator of the number of classes for the SBM. This is

a very powerful result, because the algorithm of [SKZ14], unlike all others
mentioned so far, does not need k as an input.

Remark 4.4. Note that λ
↓|·|
1 (B) does not necessarily need to be calculated

directly, but it can be estimated easily from the degree sequence d as follows,

exploiting Theorem 3.2

λ
↓|·|
1 (B) =

∑i∈V d2
i

∑i∈V di
.

Interestingly, the authors of [SKZ14] observed (with no further explana-
tion) that SC based on their proposed Bethe-Hessian matrix performs slightly
better than the non-backtracking matrix of [Krz+13], especially for k > 2.

All these results are powerful as they propose algorithms capable of reach-
ing the information-theoretic threshold, but they also have inherent weak-
nesses as they only guarantee a positive correlation of their output classi�-
cation with the underlying true structure. Speci�cally, these positive corre-
lations do not imply that the classi�cation performance is maximal. In par-
ticular, even in [GLM16] where spectral clustering on the DCSBM is studied,
the problem of eigenvector pollution due to degree heterogeneity is not dis-
cussed and a fortiori not corrected.

4.4 contributions
In the state-of-the-art methods we presented, while sparsity is not properly
accounted for in [Fie73; SM00; NJW01a; New06; LR+15; Jin+15], the line of re-
search based on B (and consequently Hr) [Krz+13; SKZ14; BLM15; GLM16]
does account for sparsity and provides methods to reach the detectability
threshold; yet, all they guarantee is the possibility to obtain a positive, pos-
sibly suboptimal, correlation between the algorithm output and the underly-
ing community structure. As for the works on regularization [Ami+13; JY13;
LR+15; LLV18; LLV15; QR13], they only establish theoretical results of per-
fect community recovery far from the (most interesting) detection threshold.

In Chapter 5 we show that a proper parametrization of the Bethe-Hessian
matrix allows one to solve both the issues of sparsity and heterogeneity at
once on DCSBM-generated graphs. We propose a simple SC scheme which
provably performs non-trivial clustering as soon as α > αc and is robust to
degree heterogeneity, as it retrieves eigenvectors not infected by the node
degrees. Our central result comes in the form of a claim which is supported
by three parallel non-rigorous but convincing arguments. The proposed al-
gorithm is extensively tested on synthetic DCSBM graphs and our simula-
tions evidence that it outperforms standard competing spectral techniques.
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In this chapter we further provide a natural explanation to the observed
higher performances of the Bethe-Hessian of [SKZ14] with respect to the
non-backtracking of [Krz+13].

Successively, Chapter 6 studies SC based on the matrix Lsym
τ and shows

why a small value of τ is preferable, drawing a connection to our results of
Chapter 5. We further show for which value of τ the leading eigenvectors
of Lsym

τ allow for non-trivial community reconstruction as soon as α > αc,
addressing a further unanswered question of [QR13].

Chapter 7 then considers the problem of e�ciently translating our theoret-
ical results of Chapters 5, 6 into a practical algorithm which can be applied
on arbitrary graphs. The proposed algorithm is extensively tested on real
networks (for which the performance is measured in terms of modularity
and DCSBM log-likelihood) and, in all cases, it outperforms or it is on par
with the standard competing spectral techniques.

Finally, Chapter 8 closes Part II, providing a new vision to SC and in partic-
ular a compelling new connection between our proposed approach and all
aforementioned standard spectral methods, so far treated independently. In
particular, we show that our proposed algorithm for CD represents a “bridge”
between the aforementioned competing methods and is capable to self-adapt
to di�erent levels of sparsity as well of hardness of the clustering problem.
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This chapter considers spectral community detection (CD) on sparse graphs with het-

erogeneous degree distributions, generated from the degree corrected stochastic block
model (DCSBM). We show that a conveniently parametrized sequence of Bethe-Hessian

matrices {Hζp}p=1,...,k can be used to perform spectral clustering (SC) as soon as theo-

retically possible, without su�ering from the graph degree heterogeneity. As opposed to

competitive methods, our proposed parametrization inherently accounts for the hard-

ness of the classi�cation problem.
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Chapter 4 showed that in spectral clustering (SC) theory it is challenging
to address simultaneously sparsity and heterogeneity in the degree distribu-
tion that typically characterize real-world graphs. Consequently, many com-
monly adopted spectral algorithms have poor performances on real datasets
because either one of these two problems is not kept into account. This chap-
ter shows that the eigenvectors corresponding to the smallest eigenvalues
of the unweighted Bethe-Hessian matrix Hr, de�ned as

The Bethe-Hessian

matrix

Hr = (r2 − 1)In + D− rA, (5.1)

81
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can be exploited for a set of properly chosen values of r to e�ciently per-
form SC in sparse graphs generated from the degree corrected stochastic block
model (DCSBM) of De�nition 1.11. This proposed parametrization naturally
accounts for the hardness of the detection problem and we claim it to be
optimal in the sense that no other parametrization (including the one of
[SKZ14]) achieves higher performance, at least for DCSBM graphs. Moreover,
for k classes of equal size and C = cout1k1T

k + (cin − cout)Ik, it obtains a
positive overlap as soon as theoretically possible, achieving the DCSBM de-
tectability threshold.

To the best our knowledge, there is no equivalent method which is explic-
itly adaptive to the hardness of the detection problem as the one described
in this chapter. Moreover, the set of the optimal values of r can be directly
and e�ciently computed for any graph (hence not only for the DCSBM).

The central contribution of this chapter is a claim describing the shape
of the eigenvectors attached to the smallest eigenvalues of the set of Bethe-
Hessian matrices obtained for the optimal r values. This result comes in the
form of a claim because, to the best of our knowledge, the mathematical tools
to formally prove it are still lacking. The claim, however, is backed by several
arguments as well as by numerous numerical simulations. For simplicity, we
informally summarize here its content.

To each k-class graph, community detection is performed by �rst associat-
ing a set of k Bethe-Hessian matrices {Hζp}p=1,...,k, with ζp de�ned so that
the p-th smallest eigenvalue of Hζp is equal to zero. We then extract from
each matrix the eigenvector xp attached to the zero eigenvalue (Hζp xp = 0).
The eigenvectors {xp}p=1,...,k are stacked in the columns of the matrix XInformal statement

of the main result de�ned in Algorithm 4.1 and used to produce the small dimensional node
embedding on which the k-means algorithm is applied. Claim 5.1 justi�es
the relevance of the above procedure as an e�cient community detection (CD)
method on DCSBM graphs, stating that:

• The largest value of ζp that can be de�ned is ζk. We show that, as a
consequence, the (k + 1)-th smallest eigenvalue of Hr is always pos-
itive for all r and the maximal number of negative eigenvalues of Hr

as function of r is precisely equal to k. This allows one to build an
estimator for the number of classes.

• The same hypotheses must be veri�ed to guarantee that the k domi-
nant eigenvectors of the non-backtracking matrix (De�nition 1.8) and
the set of vectors {xp}p=1,...,k bring information on the class structure.
This, for k classes of equal size and C = cout1k1T

k + (cin − cout)Ik,
implies that the vectors {xp}p=1,...,k can be used to reconstruct com-
munities as soon as theoretically possible, i.e. when α > αc.

• Unlike what was observed in Figure 4.2 where the eigenvectors of
Lsym = D−1/2AD−1/2 (but similar comments may be made for A,
D − A, Hr for a suboptimal choice of r) were tainted by the degree
heterogeneity, the entries of {xp}p=1,...,k are not; consequently they
provide a suited input for k-means.
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The properties of {xp} allow us to de�ne an e�cient algorithm for CD in
sparse graphs with a heterogeneous degree distribution, solving at once the
two main challenges discussed in Chapter 4. We now proceed with the for-
mal statement of Claim 5.1, together with a clear de�nition of the hypotheses
under which it is formulated.

5.1 main result

5.1.1 model and setting

Let G(V , E) be a k class DCSBM generated graph as in De�nition 1.11. Recall
that C ∈ Rk×k is the class a�nity matrix, while π ∈ Rk is the vector
determining the expected class sizes, with 0 < πp < 1 the probability of an
arbitrary node to belong to class p. In order to consider an asymptotically
non-trivial community detection setting, we work under Assumption 3.1,
which we recall here for convenience.

Assumption 5.1. Let C ∈ Rk×k
be the class a�nity matrix and π be the

expected class size vector as in De�nition 1.11, with Π = diag(π). Further

let θ be the vector encoding the degree heterogeneity in the DCSBM and denote

Φ = E[θ2
i ]. The matrices C, Π satisfy the following hypothesis:

• CΠ1k = c1k, for some positive c,

• λp(CΠ)Φ >
√

cΦ for all 1 ≤ p ≤ k.

In the particular case in which π = 1k/k and C = cout1k1T
k + (cin −

cout)Ik, it is easily veri�ed that λp(CΠ)Φ >
√

cΦ implies α > αc = 1, i.e.
we assume to be above the detectability threshold. In a more interesting set-
ting in which communities have arbitrary sizes, Assumption 5.1 consists in
assuming that the number of isolated eigenvalues of the non-backtracking
matrix is equal to k. Note that, as we mentioned already in Chapter 3, As-
sumption 5.1 implies that, with high probability, the graph G(V , E) has a
giant component, in agreement with Theorem 1.1.

Remark 5.1 (Negative eigenvalues of CΠ). It must be noted that Assump-

tion 5.1 implies λp(CΠ) > 0 for all 1 ≤ p ≤ k. However, the results of

Claim 5.1 remain valid if one replaces the second point of Assumption 5.1 by

|λp(CΠ)Φ| >
√

cΦ, that is, λ↓p(CΠ) for p ≥ 2 may be of arbitrary sign

and only its modulus may be lower-bounded; λ↓1(CΠ) = c, being the Perron-
Frobenius eigenvalue, is necessarily positive in any case.

As the notations to describe this more general case are more cumbersome,
we prefer here to focus on the simpler case where CΠ � 0. Further com-
ments to the more general setting in which CΠ may have negative eigenval-
ues will be made in the following. We now proceed providing the rigorous
statement of our result.
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5.1.2 characterization of the informa-
tive eigenvectors of Hr

The central result of this chapter revolves around the characterization under
Assumption 5.1 of a particular set of values r = ζp which must be carefully
selected to best operate on Hr. These values are de�ned as follows.

De�nition 5.1 (ζp). Consider an arbitrary graph G(V , E) composed of ncc

connected components. Let G(j)(V (j), E (j)) be the subgraph reduced to the j-th
connected component, and H(j)

r its associated Bethe-Hessian matrix. Let p beThe ζp’s are well

de�ned on an

arbitrary graph

G(V , E)

an integer between 1 and n. We de�ne, if it exists, ζ
(j)
p as:

ζ
(j)
p =min

r≥1
{r : λ↑p(H(j)

r ) = 0}. (5.2)

In words, ζ
(j)
p is, if it exists, the smallest value of the parameter r ≥ 1 such that

the p-th smallest eigenvalue of H(j)
r is null.

Note that, even though we focus in the remainder on DCSBM-generated
graphs, the ζp’s are well de�ned on arbitrary graphs. Here we list a few
important properties of these values:

1. At r = 1, H(j)
1 = D(j)− A(j) is the combinatorial Laplacian of the sub-

graph associated to the j-th connected component. As this subgraph
is by de�nition connected, it is well known [CG97] that its smallest
eigenvalue is null and that λ↑p≥2

(
H(j)

1

)
> 0. Consequently, ζ

(j)
1 = 1

always exists and if ζ
(j)
p≥2 exists, it is strictly superior to 1.

2. If ζ
(j)
p≥2 exists, then ζ

(j)
2 , . . . , ζ

(j)
p−1 necessarily exist and are smaller or

equal to ζ
(j)
p . In fact, if ζ

(j)
p exists, it means that at r = ζ

(j)
p , 0 is the p-th

smallest eigenvalue of H(j)
r : the p− 1 smallest are thus≤ 0. Given thatPlot of λ↑1,2(H(j)

r ).
The vertical line is at

r = ζ
(j)
2 .

2 4
r

5.0

2.5

0.0

1 (H(j)
r ) 2 (H(j)

r )

these p− 1 smallest are ≥ 0 at r = 1 and by continuity of λ↑p(H(j)
r ),

they necessarily cross zero before ζ
(j)
p . Similarly, if ζ

(j)
p≥2 does not exist,

then all ζ
(j)
q for q > p do not exist.

3. Empirically, on as many connected graphs as we could think of, we
have observed that the function λ↑p(Hr) for r ≥ 1 either never crosses
zero (in which case ζp does not exist), crosses zero exactly twice and
is convex between these two crossings (in which case ζp is the lowest
of the two values), or, in very symmetric cases, touches zero exactly
once without crossing it (in which case ζp is that value).

With the de�nition of ζp being laid out, we are now in position to state
our main result.
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Claim 5.1. Let G(V , E) be generated according to De�nition 1.11, that is, a

DCSBM with k classes. Let D and A be its degree and adjacency matrices, and

Hr = (r2 − 1)In + D − rA, for r ∈ R, its Bethe-Hessian matrix. Provided

that Assumption 5.1 is satis�ed for c = On(1), we have with high probability

for all large n that:

• There is only one connected component j for which ζ
(j)
p≥2 exists: it is the

giant component. In the following, abusing notation, we simply write ζp

instead of ζ
(j)
p to refer to the ζ’s associated to this giant component. One

has ζ1 = 1 and, if it exists, ζp≥2 veri�es
1

ζp =min
r>1
{r : λ↑p(Hr) = 0}. (5.3)

• The largest p for which ζp exists is equal to k, the number of underlying

communities of the DCSBM.
2
One has 1 = ζ1 < ζ2 ≤ . . . ≤ ζk ≤

√
cΦ.

More precisely:

∀ p s.t. 1 ≤ p ≤ k, ζp =
c

λ↓p(CΠ)
+ on(1). (5.4)

• For 2 ≤ p ≤ k and ζp ≤ r ≤
√

cΦ, the p smallest eigenvalues of Hr

are isolated. In particular, zero is an isolated eigenvalue of Hζp . Its cor-

responding eigenvector xp is correlated to the community structure and

the entries of xp are in expectation (over realizations of A) independent

of the degrees of the graph.

In simple terms, Claim 5.1 predicts that, in a graph of k communities, SC
can be successfully performed by successively retrieving the eigenvector as-
sociated to the null eigenvalue of each of the matrices Hζ2 , . . . , Hζk . In the
speci�c case of k classes of equal size with Caa = cin and Cab = cout if a 6= b,
Claim 5.1 states that for 2 ≤ p ≤ k the ζ’s are degenerate. As we will see

next, this value of r di�ers from the choice r =

√
λ
↓|·|
1 (B) =

√
cΦ advo-

cated by [SKZ14], unless α = αc, i.e. , exactly at the detectability threshold.

Figure 5.2 provides a visual representation of the typical spectrum of Hr

for r not too far from a ζp: the eigenvalue of Hr closest to zero is clearly iso-
lated and the eigenvector associated to this eigenvalue is strongly aligned to
the community structure. In Figure 5.3, for a typical realization of a DCSBM,
λ↑p(Hr) is represented as a function of r for p = 1, 2, 3 and 4 in solid lines

1 This statement allows to de�ne ζp with respect to the Bethe-Hessian matrix of the whole
graph, instead of the Bethe-Hessian matrix of its giant component. The fact that Equa-
tion (5.3) is veri�ed with high probability is not evident. In fact, considering all the discon-
nected components at once might change the ordering of the eigenvalues. More details are
to be found in Appendix B.1

2 Precisely, we will see that λ↑k+1(Hr) > 0 for all r > 1 with high probability, so that
ζk+1 is not de�ned; in fact it was interestingly shown in [SKZ14] and we will verify that
λ↑k+1(H√cΦ) ↓ 0+ as n→ ∞, but the limit is never reached.
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and p = 5 in dotted line. In this instance, ζ5 does not exist (and all subse-
quent ζp’s do not exist either), ζ1 = 1, and ζ2,3,4 exist and lie in (1, 2).

The non-obvious parts of the claim are (i) of course that such ζp’s do
exist up to p = k, (ii) that they are concentrated around a deterministic
value depending on the statistics of the model, (iii) importantly, that zero is
indeed an isolated eigenvalue in the spectrum of Hζp , (iv) that the associated
eigenvector is informative for the underlying community structure and that
is not infected by the degrees of the graph.

As we already mentioned, the statement of Claim 5.1 is formulated as a
claim in the sense that, while e�orts have been made to rigorously prove
parts of the result [CZ20], the mathematical tools required to fully prove
Claim 5.1, to the best of our knowledge, do not exist yet. Instead, the remain-
der of this section will propose three complementary supporting elements,
arising from non-rigorous but convincing approximations, in particular bor-
rowing arguments from the �eld of statistical physics. Speci�cally, we will
successively show

• under Section 5.2.1 that the vectors xp, solution of Hζp xp = 0, are
correlated with the community labels.

• under Section 5.2.2, that the informative null eigenvalue of Hζp (asso-
ciated to xp) is located in p-th smallest position and is isolated. This
result is algorithmically crucial to determine ζp itself.

• under Section 5.2.3, that the entry xp,i is essentially independent of
di, the degree of node i; precisely, it is strictly independent of di on
average (over random allocation of the labels) and only depends on di
through a noise term of order 1/

√
di otherwise.

• under Section 5.2.4 we brie�y recap the proof of [CZ20] that considers
the moderately sparse regime. We will in particular focus on both the
main intuitions and weaknesses of the proof.

5.2 supporting arguments

5.2.1 linearization of the bp eqations
We �rst proceed to our agenda by arguing that the eigenvectors xp of Hζp are
correlated with the community labels. Consider the belief propagation (BP)
equations (4.7, 4.8, 4.9). These are the asymptotically Bayes optimal solution
for inference in the sparse DCSBM. As we saw in Chapter 2 for the Ising model,
these equations admit a trivial �xed point, for ηij(`i) = π`i , ∀ (ij) ∈ Ed.
It is a trivial solution because it leads to a random node partition. However,
the non-backtracking matrix naturally comes into play linearising Equations
(4.7, 4.8, 4.9) around this trivial �xed point.
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Figure 5.1: Left: spectrum of the matrix B on the complex plane. The blue dots repre-
sent the uninformative eigenvalues, the orange diamonds the real eigen-
values outside the bulk and the maroon squares the real eigenvalues in-
side the bulk. The lines indicate the theoretical values. For this network
n = 5 000, k = 3, θi ∼ [U (3, 10)]3, c = 8. The o�-diagonal elements of
C are distributed according to Cp>q ∼ N (cout, cout/k) with cout = 4
and the diagonal elements are then �xed to have CΠ1k = c1k. The ele-
ment of π are distributed as πi ∼ N (1/k, 1/2k). The entries are then
rescaled sot that Tr(Π) = 1. Right: position of the �rst four real eigen-
values of B as a function of α. For this simulation n = 5 000, k = 2,
θi ∼ [U (3, 10)]3, c = 6.

In particular, let ηji(`i) = π`i + bji(`i) for small b•(·). Letting bT =

[bT
1 , . . . , bT

k ] ∈ R|Ed|k, with bp ∈ R|Ed| containing the entries of bij(p), we
obtain as in [Krz+13]:

Linearization of the

asymptotically Bayes

optimal BP equations

(T ⊗ B)b = b + on(1), (5.5)

where ⊗ is the Kronecker product and T = ΠC
c −Π1k1T

k . From Equation
(5.5), our interest is in the eigenvalues of (T ⊗ B) equal (or close) to one.
From the properties of the Kronecker product, the set of eigenvalues of
(T ⊗ B) is Λ(T ⊗ B) = {λi(B)λj(T) : 1 ≤ i ≤ |Ed|, 1 ≤ j ≤ k}.
This induces a one-to-one relation between the k − 1 non-zero eigenval-
ues3 of T and the k − 1 eigenvalues of B, that need to satisfy the relation
λq(T)λt(B) = 1 for some t, q. From the expression of T, it comes that the p-
th largest eigenvalue of T satis�es λ↓p(T) = 1

c λ↓p+1(CΠ) for 1 ≤ p ≤ k− 1
(see Appendix B.2 for details) so that, for 2 ≤ p ≤ k, there must exist
ζp ∈ Λ(B) such that:

ζp =
c

λ↓p(CΠ)
+ on(1). (5.6)

To these eigenvalues correspond k− 1 exact eigenvectors gp ∈ R|Ed| of B
satisfying Bgp = ζpgp (with gp = bp + on(1)) that are naturally “informa-
tive” as they are associated to structural eigenvalues of T. Also, from a BP
standpoint, these eigenvectors are small deviations from the uninformative
�xed point, so must point towards informative directions.

3 Note that λ↑1(T) = 0.
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Note importantly here that Equation (5.6) de�nes ζp as a real eigenvalue
of the matrix B. So far, this de�nition needs not correspond to the claimed
de�nition of ζp as introduced in Claim 5.1: Section 5.2.2 will show that
these two de�nitions are indeed equivalent. In addition, by Assumption 5.1,
λ↓1(CΠ) = c has unit multiplicity, so that ζp > 1 + on(1) for all p > 1.
Along with Equation (5.6), we thus have 1 + on(1) < ζp ≤

√
cΦ + on(1),

and thus ζp is asymptotically con�ned inside the bulk of radius
√

cΦ+ on(1)The ζp’s are

eigenvalues of B of B. Figure 5.1 con�rms that inside the disk of radius
√

cΦ, these are the
only informative eigenvalues of B. Speci�cally, the real eigenvalues of B
inside the bulk are divided between (i) the (non-informative) eigenvalues
−1, 0, 1, and (ii) the k eigenvalues λ = ζp ≈ c

λ↓p(CΠ)
≤
√

cΦ just described.

Having identi�ed the k− 1 informative eigenvectors g2≤p≤k ∈ R|Ed| of B,
we now recall that the embedding vectors the form the column of X ∈ Rn×k

appearing in Algorithm 4.1 are obtained from

(
ψ(gp)

)
i = ∑

k∈∂i
gp,ki.

The vector ψ(gp) further satis�esThe eigenvector

attached to the null

eigenvalue of Hζp is

informative

Hζp ψ(gp) = 0,

hence ψ(gp) ≡ xp. Note that, for ζ1 = 1 we have H1 = D− A and x1

is the vector 1n, which is irrelevant to reconstruct communities.

Let us speci�cally focus on the particular case of k classes of equal size
with the usual assumption Cab = cin if a = b and cout otherwise. In this case
e�cient algorithms for CD exist only if α > αc. Under this condition, B has
two informative eigenvalues ≈ (c− cout)Φ and ≈ c

c−cout
on either side of

the disk (bulk) of radius
√

cΦ. As the detection problem becomes harder, the
two eigenvalues get closer together until they (asymptotically) meet right at
the detectability transition α = αc where (c − cout)Φ =

√
cΦ. Further

increasing the detection di�culty (that is, for α < αc), the two eigenval-
ues become complex conjugate. This behavior is shown in Figure 5.1 (right
panel) for k = 2. Summarizing, we have for 2 ≤ p ≤ kThe ζp’s are isolated

eigenvalues of B if

α > αc (c− cout)Φ =
c

c− cout
=
√

cΦ, when α = αc

(c− cout)Φ >
√

cΦ >
c

c− cout
> 1, when α > αc.

The fact that the leading eigenvalues of largest amplitude remain isolated
down to the detectability threshold is the strongest argument in favor of the
algorithm proposed by [Krz+13]. The authors in [Krz+13] however ignored
the e�ect on the corresponding eigenvalue inside the bulk of B which, from
our present discussion, is similar. This behavior can be extended to more
than two classes with arbitrary sizes for which, however, the hypotheses of
the conjecture of [Dec+11] do not hold.

Let us summarize these results in the form of the following argument.
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Argument 5.1. Under Assumption 5.1 for all large n with high probability, the

non-backtrackingmatrix B of a graph G(V , E) generated from a k-class DCSBM
has k− 1 isolated real eigenvalues inside the disk of radius

√
cΦ (bulk). These

eigenvalues are found at positions 1 < ζp = c
λ↓p(CΠ)

+ on(1) for 2 ≤ p ≤ k.

Besides, the eigenvectors gp of B associated with these eigenvalues ζp bring

information about the community structure, which can be extracted through

the vectors xp ∈ Rn
, de�ned as:

xp,i = ∑
j∈∂i

gp,ij, Bgp = ζpgp;

or equivalently satisfying

Hζp xp = 0.

Element 5.1 provides a �rst statement of Claim 5.1, according to which
the class information should be retrieved from the vector xp solution to
Hζp xp = 0, and that ζp = c/λ↓p(CΠ) + on(1). This argument however
does not specify the location (in the ordered list of the eigenvalues) of the
null eigenvalue of Hζp to which the eigenvector xp corresponds nor the
structure of the eigenvector xp, and in particular its dependence on the de-
grees of the graph. These aspects are covered in the subsequent sections.

5.2.2 the ising hamiltonian on G
In this section, through a statistical physics mapping between Bayesian infer-
ence and an Ising model de�ned on the graph G(V , E), we aim to informally
justify why the smallest eigenvalues of the matrix Hr correspond to “infor-
mative states” of the system and why the zero eigenvalue of Hζp (associated
by de�nition with the informative eigenvectors xp) should be isolated and
in the p-th smallest position of the spectrum of Hζp .

The smallest eigenvalues of Hr are informative.

In this section we provide a motivation on why the eigenvectors associated
to the smallest eigenvalues of Hr should be the informative ones. For sim-
plicity, let us �rst consider the case of k = 2 classes of equal size. We write
the Ising Hamiltonian on the graph G(V , E), with communities:

H(s) = − ∑
(ij)∈E

ath
(

1
r

)
sisj. (5.7)

The term βJ has here been replaced by ath
( 1

r

)
for convenience. We now

study the magnetization of this Hamiltonian with the (asymptotically ex-
act) Bethe approximation detailed in Chapter 2. Let us recall the basics on
the Bethe-Hessian matrix. The quantities mi = 〈si〉β and χij = 〈sisj〉β
cannot be computed analytically on G(V , E), but are well approximated by
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Figure 5.2: Spectrum of the matrix Hr for r = 3/2
√

cΦ. On the x axis the eigen-
values, on the y axis the respective histogram. In green the bulk of unin-
formative eigenvalues and in red the two isolated eigenvalues – zoomed
to simplify the readability –. The two drawings give a sketchy represen-
tation of the ferromagnetic ground state (all black spins) and of the in-
formative state (half black and half white). For this network, n = 5 000,
k = 2, π = 1k/2, cin = 8, cout = 3, r = 6.4, θi ∼ [U (3, 5)]4.

the global minimum of the Bethe free energy F̃Bethe
β (m̂, χ̂), de�ned in Equa-

tion (2.17). For small values of β (or equivalently, for large r), the global
minimum of F̃Bethe

β (m̂, χ̂) is obtained for m̂ = 0n, while for smaller values
of r, other local minima appear.

The appearance of new local minima can be obtained from the spectral
properties of the Bethe-Hessian matrix Hr that corresponds to the Hessian
of F̃Bethe

β (m̂, χ̂) at m̂ = 0n.

∂2F̃Bethe
β (m̂, χ̂)

∂m̂i∂m̂i
=

(r2 − 1)In + D− rA
r2 − 1

≡ Hr

r2 − 1
.

The Hessian in m̂ = 0n is therefore trivially related to Hr. Negative eigen-
values in the spectrum of Hr correspond to the appearance of new local min-
ima in F̃Bethe

β (m̂, χ̂) that can be approximated by the corresponding eigen-
vectors. Recalling once again that for large r, all eigenvalues of Hr are posi-
tive, then the eigenvalues that may become negative (and are hence associ-
ated to a non-trivial magnetization) are the smallest ones. In Chapter 2 we al-
ready considered the paramagnetic-ferromagnetic phase transition in which
there is one negative eigenvalue in the spectrum of Hr with the correspond-
ing eigenvector having all positive entries. When G(V , E) is a realization of
the DCSBM with k = 2, however, also the second smallest eigenvalue of Hr

may become negative: this is a consequence of Theorems 3.2 (describing the
spectrum of B) and 2.1 (describing the relation between the eigenvalues of
B and Hr). This eigenvalue corresponds to a further (local) minimum of the
Bethe free energy which is induced by the community structure of G(V , E).
Let us summarize some important facts:

• A local minimum correlated to the class structure appears in F̃Bethe
β (m̂, χ̂)

because the con�guration in which si = 1 if `i = 1 and si = −1 if
`i = 2 is close to a local minimum of H(s): for two classes of equal
size, minimizingH(s) with s ⊥ 1n is equivalent to minimize the RCut.



5.2 supporting arguments 91

• This informative minimum corresponds to the second smallest eigen-
value of Hr, because the ferromagnetic con�guration has always a
lower energy and it corresponds to the global minimum of F̃Bethe

β (m̂, χ̂) The eigenvector

associated to the

second smallest

eigenvalue of Hr is

informative

at su�ciently low temperature.

• The interpretation of the eigenvectors of Hr is rigorous for large val-
ues of r (i.e. , at the paramagnetic point), but a similar behavior is
expected to be observed also for other values of r. In particular, the in-
formative eigenvector generally depends on r but it is still correlated
to the class structure and found in second smallest position.

This relation between Hr and the Ising Hamiltonian allows us to make a
further comment on the choice r = ζp. Recall from Equation (4.11) that exact
Bayesian inference can be performed for k = 2 studying the magnetization
of the Hamiltonian

H(s) = − ∑
(ij)∈E

1
2

log
(

cin

cout

)
sisj −∑

i∈V
hi(s)si, (5.8)

where we recall that hi(s) is a local �eld that prevents all node from being
in the same class. From a straightforward calculation, we get

1
2

log
(

cin

cout

)
= ath

(
cin − cout

cin + cout

)
= ath

(
1

ζ2 + on(1)

)
.

Relating Equation (5.7) to Equation (5.8), the choice r = ζ2 corresponds
to setting at the Bayes optimal inference temperature. Yet, it should not be
forgotten that in Equation (5.7) the local magnetic �eld does not appear. The
consequence of neglecting this �eld is that the informative eigenvector of Hr

does not correspond to the global (hence stable) minimum of F̃Bethe
β (m̂, χ̂),

but to a metastable local minimum. Discarding the �eld term is analytically
convenient, but it creates an uninformative eigenvector in smallest position.

Let us now conclude this discussion, brie�y commenting the case k > 2.
It appears evident that the mapping between the Ising Hamiltonian and the
Bayes optimal solution is, in this case, not straightforward. This is because
labels, unlike spins, may take k > 2 di�erent values. Nonetheless, a Ising
Hamiltonian on G(V , E) with k > 2 is still useful for CD because in this
case k− 1 local minima appear in the function F̃Bethe

β (m̂, χ̂). These minima
are determined by the expectation of A and are, consequently, related to the
community class and correspond to the k smallest eigenvalues of Hr.

We are thus left to showing why speci�cally the p-th smallest eigenvalue
of Hr for the particular choice of r = ζp is of utmost importance, and why
it corresponds to the null isolated eigenvalue of Hζp .
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Figure 5.3: Behavior of λ↑p(Hr) as a function of r for 1 ≤ p ≤ k in solid lines, and for
p = k + 1 in dotted line. The vertical lines are the theoretical values of
c/λ↓p(CΠ)(dashed dotted line), of

√
cΦ (dotted line) and of λ↓p(CΠ)Φ

(dashed lines). For this simulation, n = 50 000, c = 6, cout = 2, k = 4,
Cp>q ∼ N (cout, 2cout/k) and π ∝ 1k.

Zero is an isolated eigenvalue of Hζp .

This result follows from the observation, reported in Figure 5.3, that the k-
th smallest eigenvalues λ↑1(Hr), . . . , λ↑k (Hr) of Hr successively equal zero
in this order as r increases. Starting from r = 1, Hr = H1 = D − A for
which we know that λ↑j (H1) = 0 for 1 ≤ j ≤ ncc with ncc the number
of connected components and λ↑i (H1) ≥ 0, i > ncc. Increasing r beyond
r = 1, the successive smallest eigenvalues of Hr �rst all increase and re-
main equal to the left edge of the bulk before escaping, each in turn (and
in the order λ↑2(Hr), . . . , λ↑k (Hr)), the bulk of non-informative eigenvalues.
At their point of escape, they successively shift until they cross zero: this
is where the successive values ζ2 ≤ ... ≤ ζk are de�ned. This in particu-ζp is an isolated

eigenvalue of B and

0 is an isolated

eigenvalue of Hζp

lar implies that the p-th smallest eigenvalue of Hζp coincides with (i) the
null eigenvalue of Hζp , as well as with (ii) its largest isolated (so the last
informative) eigenvalue. This allows us to rede�ne ζp as in Equation (5.3)
of Claim 5.1. Note in passing that, letting r further increase beyond ζk, the
left edge of the non-informative bulk of Hr progressively shifts back (from
positive values) towards zero until it reaches asymptotically zero in the limit
where r =

√
cΦ [SKZ14], before increasing again away for r >

√
cΦ. These

last �ndings may be summarized as follows.

Argument 5.2. Given a graph G(V , E) with k classes, generated from the

DCSBM, the p smallest eigenvalues of the matrix Hr are isolated for ζp ≤ r ≤√
cΦ, for all 2 ≤ p ≤ k. The entries of the p smallest eigenvectors are corre-

lated with the class labels. Besides, in the speci�c case where r = ζp, the p-th
smallest eigenvalue of Hζp is equal to zero.

Argument 5.2 answers the problem of locating the informative eigenvalue-
eigenvector pair (0, xp) of Hζp introduced in Argument 5.1, and of justifying
why it is isolated. The last step, developed in the next section, consists in
understanding the structural content of the informative eigenvector xp.
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5.2.3 parametrization to provide resilience
to degree heterogeneity

From a purely algebraic standpoint, the Bethe-Hessian matrix Hr may be
seen as a regularized combinatorial graph Laplacian. In particular, we now
show that r = ζp is the good parametrization for which the informative
eigenvectors are resilient to degree heterogeneity. Our argument exploits
the local convergence of G(V , E) to aGalton-Watson (GW) tree, that has been
extensively commented in 1.3.2. The labelled GW tree

i

Fixing A (and thus the degrees di), we consider the probability distribution
of node label `i, conditionally to the label of one of its neighbours `j:

P(`i|`j, Aij = 1) =
P(`i, `j|Aij = 1)

P(`j|Aij = 1)
=

∫∫
dθidθjP(`i, `j, θiθj|Aij = 1)

P(`j)

=

∫∫
dθidθjP(Aij = 1|θi, θj, `i, `j)P(`i)P(`j)P(θi)P(θj)

Zπ`j

=
π`i C`i ,`j

c
=

(ΠC)`i ,`j

c
=

(CΠ)`j,`i

c
. (5.9)

Let vp be the eigenvector associated to the p-th largest eigenvalue of CΠ
and let us de�ne up ∈ Rn with up,i = vp,`i the n-dimensional class-wise
expansion of vp: this vector up is inherently random as the class allocations
`1, . . . , `n are here considered random. Then, for n large, under the limiting
tree approximation with conditionally independent o�springs, we take an
expectation over the random allocation of the labels di�erent from `i (de-
noted with `\i), with A and `i known:

E`\i [(Aup)i|A, `i] = ∑
j∈∂i

E`\i [up,j|A, `i] = ∑
j∈∂i

E`\i [vp,`j |A, `i]

≈ ∑
j∈∂i

∑
`j

P(`j|`i, Aij = 1)vp,`j =
1
c ∑

j∈∂i
∑
`j

(CΠ)`i ,`j vp,`j

=
1
c ∑

j∈∂i
(CΠvp)`i =

di

c
λ↓p(CΠ)vp,`i

= di
λ↓p(CΠ)

c
up,i (5.10)

where the approximation follows from the fact that conditional indepen-
dence of the neighbors of a given node only holds asymptotically. As a con-
sequence of Equation (5.10), we �nd that

E`\i [Hrup|A, `i] ≈
[
(r2 − 1)In + D

(
1− r

λ↓p(CΠ)

c

)]
up, (5.11)

In order for this equation to be an approximate eigenvector equation for
arbitrary degrees in D, the right hand-side term proportional to D must
vanish. That is, one must select
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r =
c

λ↓p(CΠ)
≈ ζp

(this last approximation having been introduced and discussed in Section 5.2.1).
This result implies that the eigenvectors xp de�ned as Hζp xp = 0, for 1 ≤
p ≤ k, correspond to a noisy version of up which is not a�ected on aver-

age over the class allocation by the degree distribution. The approximationThe expectation of xp
is independent of the

degree distribution

holds beyond the average for every typical realization of the class allocation
to �rst order in di. In particular, denoting ξ p the “noise” vector satisfying
xp = up + ξ p, and thus Hζp(up + ξ p) = 0, we get

Var`\i [(Hζp up)i|A, `i] = Var`\i [(Hζp ξ p)i|A, `i]

= Var`\i [(ζ
2
p − 1 + di)ξp,i − ζp(Aξ p,i)|A, `i]

≈ Odi(d
2
i )Var`\i [ξp,i|A, `i] + Odi(di)Var`\i [ξp,i|A, `i]

≈ Odi(d
2
i )Var`\i [ξp,i|A, `i]. (5.12)

In this derivation we used the fact that the random variables ξp,i and
[Aξ p]i are essentially independent and that the variance of the sum of the
di asymptotically independent variables ξp,1, . . . , ξp,n grows linearly with di.
Now, proceeding as in Equation (5.10), we can compute Var`\i [(Hζp up)i|A, `i]

from a direct calculation of E`\i [(Hζp up)2
i |A, `i] and E2

`\i
[(Hζp up)i|A, `i],

and we obtain (to leading order in di) Var`\i [(Hζp up)i|A, `i] = Odi(di).
Combining with Equation (5.12), we get that the variance scales approxi-

mately as d−1
i . The vector xp can therefore be written as the sum of the deter-

ministic information and a noise with amplitude inversely proportional to
the square root of the degree, consistently predicting that nodes with higher
degrees are easier to classify.

These results are summarized under the form of our last argument.

Argument 5.3. The eigenvector xp (1 ≤ p ≤ k), solution to Hζp xp = 0,
is a noisy version of the vector up, de�ned as up,i = vp,`i , where CΠvp =

λ↓p(CΠ)vp. The noise for entry i scales approximately as 1/
√

di for di su�-

ciently large and is zero on average. Consequently, the entries of xp do not, to

�rst order, depend on the degree distribution but only on the labels.

Figure 5.4 con�rms our argument: a k = 2 class DCSBM graph is considered
and the informative eigenvector x2 is plot for r = ζ2 and r =

√
cΦ (as in

[SKZ14]) with the marker size of the i-th entry being proportional to 1/
√

di.
We see that for a suboptimal choice of r, all nodes with a small degree are
embedded to nearby points. For r = ζ2 instead, nodes with a small degree
are more likely to be misclassi�ed, but they are not embedded to nearby
points. Moreover, the histograms of the eigenvector entries further con�rm
this observation. For the optimal regularization, two distinct clouds density
peaks appear, while for r =

√
cΦ most eigenvector entries (in the example

we chose a power law degree distribution) are close to zero.

The following remark summarizes the major consequence of this result.
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Figure 5.4: Informative eigenvector x2 of the Bethe-Hessian matrix for r =
√

cΦ
(top) and r = ζ2 (bottom). On the right, the corresponding histogram.
For this plot, n = 10 000, k = 2, π = 12/2, cin = 14, cout = 2, θi ∼
[U (3, 10)]6. Only the giant component of G(V , E) is considered. The
background colours refer to the ground-truth labels, while the marker-
size is proportional to 1/

√
di, where di is the degree of node i.

Remark 5.2 (Embedding quality and k-means). Spectral clustering has the

role to produce a a suited input to some small dimensional clustering algorithm,

such as k-means. Referring to Figure 5.4, the role of k-means is to draw a

horizontal line on the y axis, that best separates the two clouds of points. This

line is y ≈ 0 (we considered two classes of equal size). Comparing the two The output of

k-means on x2 for

r =
√

cΦ
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histograms, one sees that, for r =
√

cΦ, at 0 there is a density peak, while at

r = ζ2 the density is minimal. For this reason, a slight deviation in the location

of y leads to the misclassi�cation of several nodes in the earlier case, but not in

the latter. We can say that the optimal choice of r produces an embedding that

is more robust to the k-means step. For pictorial purposes, Figure 5.4 limits to

the case k = 2, but the same observation holds for k > 2 classes of arbitrary

size in which the negative e�ect on k-means of a low quality embedding is even

more exacerbated.

Element 5.3 combined with Elements 5.1, 5.2 completes our justi�cation
of Claim 5.1. In the next section we give a further argument related to the
existence and location of the ζp’s that holds for moderately dense graphs
generated from the stochastic block model (SBM).
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5.2.4 ζ p in the dense regime

This section brie�y provides the main result of [CZ20] in which the authors
attempted to prove parts of Claim 5.1. They focused in particular on the
existence of isolated eigenvalues inside the bulk of B in the case of k = 2
communities of equal size. For simplicity, the authors of [CZ20] considered a
su�ciently dense regime with log(n)/c = on(1) under the SBM assumption.
As already discussed in Section 3.2.2 this setting is particularly convenient
due to the degree concentration: ‖D− cIn‖ = on(c). This allows one to re-
late the eigenvalues of B and A. In particular, for r ∈ C \ {±1} an arbitrary
eigenvalue of B, there exists r̃ = r + on(r) satisfyingIn the dense SBM

setting, the

eigenvalues of B are

trivially related to

those of A
r̃ =

λi(A)±
√

λ2
i (A)− 4(c− 1)

2
,

as it was already showed in Equation (3.7). For any λi(A) > 4(c− 1) one
simply obtains that r̃ has two solutions (denoted with r̃±) that satisfy

r̃+ = λi(A) + on(c)

r̃− =
c

r̃+
+ on(1).

In particular, for the SBM and 1 ≤ i ≤ k, one has that λ↓i (A) = λ↓i (CΠ) +

on(c), con�rming Claim 5.1 and naturally justifying the mapping between
inner and outer isolated eigenvalues of B. The main technical contribution
of [CZ20] is to prove that r = r̃ + on(r) and will not be further commented
here. Albeit the proof [CZ20] provides a very natural explanation to the exis-
tence of isolated eigenvalues in the bulk of B, it strongly relies on the degree
concentration assumption which does not hold in the sparse regime and,
above all, for the DCSBM. As we commented already in Section 3.2.2, this is
likely to be only a technical hypothesis since the empirical evidence suggests
that the behavior of the isolated eigenvalues of B is essentially preserved in
the presence of an arbitrary degree distribution.

5.3 performance comparison
In this section, Claim 5.1 is translated into Algorithm 5.1 for SC and tested
on synthetic graphs. In Algorithm 5.1, the values of ζ2≤p≤k are successively
estimated and the eigenvector corresponding to the zero eigenvalue of Hζp

is stored in the columns of X. This matrix determines the small dimensional
node embedding to on which k-means is applied.

Remark 5.3 (Value of k). Note that Algorithm 5.1 requires k as an input. If not
known in advance, k can be estimated counting the number of negative eigen-

values of H√cΦ, according to [SKZ14]. Further comments on how to e�ciently

implement this estimation will follow in Chapter 7.
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Algorithm 5.1 : Community Detection with the Bethe-Hessian
Input : adjacency matrix of undirected graph G(V , E), number of

classes k
Output : Estimated label community vector ˆ̀ .

1 begin

2 Estimate c = 1
n ∑i di and Φ = 1

nc ∑i d2
i ;

3 for p = 2 : k do

4 ζp ← r such that λ↑p(Hr) = 0 on 1 < r ≤
√

cΦ;
5 X•,p ← xp such that Hζp xp = 0;
6 end

7 Estimate community labels ˆ̀ from the node embedding
X = [X•,2, . . . , X•,k];

8 return
ˆ̀ .

9 end

Generally speaking, Algorithm 5.1 can be considered as a meta-algorithm

that is written for user readability. Deeper considerations on how to e�-
ciently implement it on arbitrary graphs (hence beyond the DCSBM) assump-
tion will be dedicated in Chapter 7.

In Figure 5.5 we compare the overlap performance (de�ned in Equation 4.1),
achieved by Algorithm 5.1 versus competing methods for synthetic DCSBM
graphs as a function of the hardness of the problem α. On the left hand-side
of Figure 5.5 is depicted the case k = 2, while on the right k = 5. In both
cases detection is asymptotically feasible only if α > αc.

In both cases, Algorithm 5.1 outperforms the competing spectral algo-
rithms and has a very close performance to the Bayes optimal solution ob-
tained with the BP algorithm4 of [Dec+11]. As α → αc, Algorithm 5.1, the
algorithm of [SKZ14] based on H√cΦ and the one of [Krz+13] based on B
give essentially the same result, which con�rms that they are indeed equiva-
lent at the phase transition. For easier detection problems though, except for
the algorithm of [QR13] which is only slightly less accurate, the performance
of all methods is largely improved by Algorithm 5.1. Interestingly, note that
|
√

cΦ − ζ2| < |λ↓2(CΠ)Φ − ζ2|, giving an intuition on why the Bethe-
Hessian method of [SKZ14] performs better than the non-backtracking ap-
proach of [Krz+13]. As for the standard spectral clustering algorithm which
exploits the dominant eigenvectors of A [LR+15], it can only perform non
trivial community reconstruction for α far beyond the threshold α = αc.
The algorithm of [SM00], based on the random walk Laplacian Lrw, is here
incapable of making any non-trivial reconstruction for the considered set of
parameters, suggesting that its dominant eigenvectors are not informative.

To further con�rm our theoretical results, Figure 5.6 depicts the overlap
of Algorithm 4.1 with M = Hr for di�erent values of r. For this simulation,

4 The codes for the SBM are taken from the �rst author of [Dec+11] personal webpage and are
adapted to the DCSBM setting modifying the �eld term appearing in Equations (4.7, 4.8, 4.9).
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Figure 5.5: Overlap comparison as a function of the hardness α of the detection
problem. Blue sharp diamonds are the result given by Algorithm 5.1,
red diamonds the algorithm using the Bethe-Hessian of [SKZ14], green
squares are for the non-backtracking of [Krz+13], yellow pentagons the
adjacency matrix as in [LR+15], purple stars the random walk Lapla-
cian, black dots are the algorithm of [QR13], the pink triangles are the
Bayes optimal solutions obtained with BP [Dec+11]. For both graphs n =
50 000, θi ∼ [U (3, 10)]4, π ∝ 1k, c = 5, C = cout1k1T

k + (cin − cout)Ik.
Averages over 10 samples.

k = 2 classes of equal size are considered. When α is large enough, small
values of r lead to better partitions than large values of r that are more af-
fected by degree heterogeneity. However, for r small, the informative eigen-
vector is not necessarily corresponding to the second smallest eigenvalue,
leading to a meaningless partition. On the contrary, larger values of r show
isolated eigenvectors also in the “hard regime”. We recall that r = ζ2 is an
α-dependent parameter: for α → αc, ζ2 is “large enough” so that the infor-
mative eigenvalue is isolated, while for α � αc it is “small enough” to give
good partitions. Also the value of r = (cin − cout)Φ/2 is α-dependent and
it corresponds to clustering with B as indicated in [Krz+13]. While it gives
good partitions very close to the transition, this choice of r seems largely
sub-optimal for easier tasks.

From a direct computation, Figure 5.6 hence suggests that the choice r =
ζp is indeed optimal, in the sense that no other value of r achieves a better
performance on DCSBM-generated graphs.

5.4 conclusion
This chapter introduced the main theoretical result of this manuscript, for-
mulated in the form of a claim under the DCSBM assumption. Several indepen-
dent arguments as well as numerical tests foster the correctness of Claim 5.1.
Summarizing, the key contributions of this chapter can be listed as follows.

• We show the existence of a parametrization of the Bethe-Hessian ma-
trix that allows one to produce a node embedding resilient to the pres-
ence of a broad degree distribution. This embedding is obtained with-
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Figure 5.6: Overlap comparison as a function of α, using the second smallest eigen-
vector of Hr , for di�erent values of r. In colour code the values of r
ranging from r = 1 (blue) to r = cΦ (yellow). The red squares indicate
r = (cin − cout)Φ/2, that is equivalent to clustering with the matrix B
[Krz+13],the purple hexagons represent the Bethe-Hessian of [SKZ14],
the green diamonds are the proposed Algorithm 5.1 and the blue crosses
are the graph Laplacian (r = 1). For these simulations, n = 20 000,
c = 8, θi ∼ [U (3, 10)]4. Average over 10 realizations.

out any preprocessing on the matrix X appearing in Algorithm 4.1
and naturally discards the “noise” introduced by the degrees.

• The proposed parametrization is deeply related to the parameters of
generative model and with the Bayes optimal inference solution. With
Algorithm 5.1 it is possible to estimate the optimal parametrization in
an e�cient and completely unsupervised fashion.

• We claim, backed by several arguments and simulations, that the pro-
posed parametrization is optimal, in the sense that no other parametriza-
tion of Hr leads asymptotically to better performances on graphs gen-
erated from the DCSBM.

All the results above have been thoroughly studied for an assortative com-
munity structure, in which each node has the largest probability to get con-
nected to nodes in its own class. As suggested in Remark 4.3, however, all the
results can be formulated in a disassortative setting. For instance, for k = 2
communities, let cin < cout. The corresponding graph has more edges con-
necting nodes in opposite communities that those connecting nodes in the
same community and is, therefore, disassortative. The second eigenvalue of
CΠ is (cin − cout)/2 < 0 and consequently ζ2 < 0. Disassortative graphs

Recalling the relation between CD and the Ising model, a negative value
of ζ2 consists in placing an antiferromagnetic interaction J < 0, favouring
con�gurations in which neighbouring nodes have misaligned spins. In this
case, the ferromagnetic con�guration 1n would not correspond to the global
minimum of the Bethe free energy and the informative eigenvector would
be associated to the smallest (and not second smallest) eigenvalue of Hr<0.
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Figure 5.7: Plot of a SBM graph with n = 5 000, k = 4 communities and C as in
Equation (5.13). The colours are attributed according to the output of
Algorithm 5.1, adapted to operate with negative values of r, while the
nodes positions are attributed according to the ground truth labels.

More general cases can be designed in which both positive and negative
eigenvalues appear in the spectrum of CΠ. While the mathematical result
is well de�ned, the interpretation of the negative eigenvalues of CΠ is not
straightforward. As an example, the right frame of Figure 5.7 displays a net-
work designed from the SBM with k = 4, Π ∝ Ik and C de�ned as:

C =

(
cin cout

cout cin

)
⊗
(

cout cin

cin cout

)
(5.13)

with ‘⊗’ the Kronecker product. This graph has a hierarchical structure: it
can be divided into two assortative communities, each of them composed
of two disassortative communities. In Figure 5.7 the position of each node
is assigned according to its true label, while the color is assigned according
to the output of k-means on the vectors xp solution to Hζp xp = 0. We can
observe that our algorithm performs well also in this particular case.

The results of this chapter introduce some relevant questions that will be
answered in the following. In particular, Figure 5.5 shows that the algorithm
of [QR13] performs very competitively with Algorithm 5.1. The theory jus-
tifying the algorithm of [QR13], however, does not cover neither the case of
sparse graphs with c = On(1), nor it provides any comment on the possibil-
ity of this algorithm to perform non trivial clustering down to the theoretical
detectability threshold αc. The high performance achieved by [QR13], how-
ever, requires a deeper understanding of the role of regularization in SC.

Chapter 6 brings new conclusions in this direction working on an explicit
relation between the Bethe-Hessian and regularized Laplacian matrices. We
will show, in particular, that the regularized Laplacian matrix of [QR13] can
indeed be exploited to achieve non-trivial clustering as soon as α > αc in the
sparse regime c = On(1), yet for a slightly di�erent value of the regularizer
τ with respect to the one proposed in [QR13].
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SC performances in sparse networks. It was further observed that small regularizations
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to our �ndings of Chapter 5 that explains why small regularizations should be preferred

and that guarantees detectability down to the theoretical threshold.
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Chapter 5 showed that a conveniently parametrization of the Bethe-Hessian
matrix allows one to de�ne a spectral clustering (SC) algorithm that deals at
once with the sparsity and heterogeneity in the degree distribution that typi-
cally characterize real-world graphs. Figure 5.5 evidences that the e�ciency
of our proposed Algorithm 5.1 is unbeaten by all competing spectral algo-
rithms on degree corrected stochastic block model (DCSBM)-generated graphs.
From this simulation, it however also appears evident that the algorithm of
[QR13] obtains very similar performances.

In the literature [QR13; Ami+13; JY13; LR+15; LLV18], regularized spectral
clustering has been considered for its ability to improve the concentration
properties of random matrices related to graphs with low average degree. A
clear representation of the positive e�ect of regularization is given in Fig-
ure 6.1 comparing on a sparse graph the spectrum of L = D−1/2AD−1/2

and Lsym
τ = D−1/2

τ AD−1/2
τ , where Dτ = D + τ In on a sparse graph gen-

erated from the DCSBM. The aforementioned works, and more speci�cally

101
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Figure 6.1: Top: Spectrum of Lsym, Bottom: spectrum of Lsym
τ with τ = c. For both

plots n = 5 000, θi ∼ [U (3, 7)]3, k = 2, c = 5, cout = 2.

[QR13], left some relevant questions unanswered on the role of regulariza-
tion in SC that we list as follows:

• The theoretical results of [QR13] together with the proposed choice
τ = d̄ (the average degree) are consistent only in the moderately
sparse regime in which the expected average degree goes to in�nity
faster than log(n). Nevertheless, the proposed algorithm is very e�-
cient also for c = On(1), as shown in Figure 5.5.Open questions

regarding

regularized SC • There exists no theoretical guarantee or conjecture of whether or not
the regularization allows one to achieve detectability down to the the-
oretical threshold.

• In the literature, the characterization of the parameter τ was never
properly addressed and its assignment was left to a heuristic choice.
Both in [QR13] and [JY13] the results provided by the authors seem
to suggest a large value of τ, but it is observed experimentally that
smaller values of τ give better partitions. In the end, the authors in [QR13]
settle on τ = d̄ and do not further address the problem of identifying
the optimal parametrization.

Working on an explicit relation between the Bethe-Hessian and the regu-
larized Laplacian matrices, in this chapter we provide a natural explanation
to regularization. We further give a precise result on the optimal (hardness
dependent) regularization as well as on the value of τ needed to achieve de-
tectability down to the theoretical threshold. As it is for Claim 5.1, also in this
case the optimal regularization can computed in an unsupervised way. We
further naturally explain why small regularizations should be preferred to
large ones, answering the three questions raised above. These results create
a bridge between statistical physics and regularization techniques.
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6.1 main result
As we just mentioned, our main result revolves around a relation between
Hr and Lsym

τ . Letting Lrw
τ = D−1

τ A, the mapping unfolds from the following
basic remark: for ζp > 1 (as de�ned in Equation (5.3)),

Dτ = D + τ In

[(ζ2
p − 1)In + D− ζp A]xp = 0 (6.1)

⇔ [D + (ζ2
p − 1)In]

−1Axp =
1
ζp

xp (6.2)

inducing a natural mapping between the Bethe-Hessian matrix at r = ζp

and the regularized random walk Laplacian at τ = ζ2
p − 1. In particular,

the vector xp solution of Equation (6.2) coincides with the eigenvector of
Lrw

ζ2
p−1 associated with the eigenvalue 1/ζp, thoroughly studied in Chapter 5.

Note that Lrw
τ and Lsym

τ have the same eigenvalues and the eigenvectors are
trivially related. Our main result states that the regularization τ = ζ2

p − 1

guarantees that the top p eigenvalues of Lrw/sym
τ are isolated down to the

detectability threshold, i.e. as soon as α > αc. We formulate this result in
the form of a claim.

Claim 6.1. Consider the graph G(V , E), generated from a k-class DCSBM. Let
ζp for 2 ≤ p ≤ k be de�ned as per Equation (5.3) with ζ1 = 1 and τ ∈ R+

be

such that ζ2
p − 1 ≤ τ ≤ cΦ− 1. Then, under Assumption 3.1 and c = On(1),

for all large n with high probability, the p largest eigenvalues of the matrix

Lrw
τ (and equivalently of Lsym

τ ) are isolated. In particular,

λ↓p(Lrw
ζ2

p−1) =
1
ζp

.

For the sake of clarity, we recall that Assumption 3.1 is the same under
which Claim 5.1 was formulated. Note that Claim 6.1 is not an obvious con-
sequence of the equivalence between Equation (6.1) and Equation (6.2) as
it is not clear that the eigenvalue 1/ζp of Lrw

ζ2
p−1 corresponds to the p-th

largest and that it remains isolated (as is zero in the spectrum of Hζp ). Fig-
ure 6.2 gives a visual representation of the spectrum of ζpLsym

ζ2
p−1, showing

that, indeed, its p-th largest eigenvalue is asymptotically close to one.

The eigenvector xp, associated to the p-th largest isolated eigenvalue of
Lrw

τ is also the solution to Hζp xp = 0 (from Equation (6.1)) and its properties
have been extensively discussed in Chapter 5. Intuitively, by picking τ away
from ζ2

p− 1, the entries of the p-th eigenvector are likely to be more polluted
by the degrees of the network. This suggests that large values of τ are likely
to lead to sub-optimal partitions.

Claim 6.1 further asserts that, for any τ in the interval [ζ2
p − 1, cΦ− 1],

the p dominant eigenvalues of Lrw
τ are isolated. Since ζp ≤ ζk ≤

√
cΦ, re-

gardless of the hardness of the detection problem, the k largest eigenvalues
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Figure 6.2: Spectrum of ζpLsym
ζ2

p−1
for p = 3. For this simulation, n = 5 000, k = 3,

θi ∼ [U (3, 10)]3, c = 8, π = [0.5, 0.2, 0.3] and C13 = 1.2, C13 =
2.7, C32 = 2.4.

of Lrw
cΦ−1 (i.e., Lrw

r2−1 for r =
√

cΦ) must be isolated. The heuristic regular-
ization τ = d̄ proposed in [QR13], while suboptimal according to the claim,
is somewhat meaningful as τ must indeed grow with d̄ ≈ c.

As a corollary to Claim 6.1, exploiting Claim 3.3, the matrices Lrw/sym
τ be

exploited to obtain an alternative method to estimate the number of commu-
nities, if unknown.

Remark 6.1 (Estimation of the number of classes). As a direct consequence
of Claim 6.1 and Claim 3.3, we have that, for all large n with high probability

k =

∣∣∣∣{i : λi(Lrw
τ )|τ=cΦ−1 ≥

1√
cΦ

}∣∣∣∣ .

We now proceed to detail the technical arguments in support of Claim 6.1.

6.2 supporting arguments
To support Claim 6.1, we rely on three intermediary lemmas of which we
give formal proof. Our main result is in a form of a claim and not of a theo-
rem because it relies on Claim 5.1 which is not formally proved, but in the
following we show that if Claim 5.1 is true, then Claim 6.1 holds as well.

6.2.1 technical lemmas

Lemma6.1. Let D and A be the degree and adjacencymatrices of an arbitrary

graph of size n. Let r > 1 and p an integer between 2 and n.
If λ↑p(D− rA) < 0 then

λ↓p

(
Lrw
−λ↑p(D−rA)

)
=

1
r

and both eigenvalues λ↑p(D− rA) and 1/r share the same eigenvector.
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The fact that the matrix Lrw
−λ↑p(D−rA)

has an eigenvalue equal to 1/r comes
easily by construction of Lrw

−λ↑p(D−rA)
. The main result of Lemma 6.1 is to

state that this eigenvalue is the p-th largest creating an explicit mapping
between the eigenvalues of D− rA (hence of Hr) and Lrw

τ for a proper value
of τ. Note that the condition λ↑p(D− rA) < 0 could be loosened, but we do
not need a stronger result in the following.

Before proceeding with the proof of Lemma 6.1, for the sake of clarity, we
enunciate Courant-Fischer theorem that will be of fundamental use.
Theorem 6.1. [Courant-Fischer, see for instance Bha13] Let M ∈ Cn×n

be

a Hermitian matrix and U a vector subspace of Cn
. Then,

λ↑p(M) = min
U:dim(U)=p

max
z∈U,z 6=0

zT Mz
zTz

λ↑p(M) = max
U:dim(U)=n−p+1

min
z∈U,z 6=0

zT Mz
zTz

.

We now proceed with the proof of Lemma 6.1.

Proof of Lemma 6.1. Let r > 1. For simplicity of notation, let us denote
λp(r) ≡ λ↑p(D− rA). De�ne the matrix Mr as

Mr = −λp(r)In + D− rA = D−λp(r) − rA

where we recall the notation Dτ = D + τ In. Note that one has λ↑p(Mr) = 0.
Letting M̃r ≡ D−1/2

−λp(r)
MrD−1/2

−λp(r)
, we then have

Lsym
−λp(r)

=
1
r
[
In − M̃r

]
.

Recalling that Lrw
τ and Lsym

τ share the same spectrum, one has in particular:

λ↓p(Lrw
−λp(r)) = λ↓p(Lsym

−λp(r)
) =

1
r

λ↓p
(

In − M̃r
)
=

1
r

(
1− λ↑p(M̃r)

)
.

Thus, proving the lemma amounts to proving that λ↑p(M̃r) = 0, which we do
now by �rst proving that λ↑p(M̃r) ≤ 0 and then that λ↑p(M̃r) ≥ 0. Denote
by X = (x1| . . . |xp) ∈ Rn×p the matrix concatenating the eigenvectors
associated to the p smallest eigenvalues of Mr. One has:

∀ 1 ≤ q ≤ p, Mrxq = λ↑q(Mr)xq and λ↑q(Mr) ≤ λ↑p(Mr) = 0.

Now de�ne the vector space V as V = span
(

D1/2
−λp(r)

X
)

. Since λp(r) is
strictly negative by hypothesis, D−λp(r) � 0 (is positive de�nite), which in
turn implies that dim(V) = p. By de�nition of V, ∀ z ∈ V, ∃ u ∈ Rp :
z = D1/2

−λp(r)
Xu. From the Courant-Fischer theorem, we can write:

λ↑p(M̃r) = min
U:dim(U)=p

max
z∈U,z 6=0

zT M̃rz
zTz

≤ max
z∈V,z 6=0

zT M̃rz
zTz

≤ max
u∈Rp,u 6=0

uTXTD1/2
−λp(r)

M̃rD1/2
−λp(r)

Xu

uTXTD−λp(r)Xu
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i.e.:

λ↑p(M̃r) ≤ max
u∈Rp,u 6=0

uTXT MrXu
uTXTD−λp(r)Xu

= max
u∈Rp,u 6=0

∑
p
q=1(xT

q u)2λ↑q(Mr)

uTXTD−λp(r)Xu
≤ 0

where for the last step we exploited λ↑q(Mr) ≤ 0 and D−λp(r) � 0. We thus
conclude that λ↑p(M̃r) ≤ 0.

To prove that the equality holds, we exploit the second relation of the
Courant-Fischer theorem. We de�ne X̄ = (xp| . . . |xn) ∈ Rn×(n−p+1) the
matrix concatenating the eigenvectors associated to the n − p + 1 largest
eigenvalues of Mr. For q ≥ p, λ↑q(Mr) ≥ 0. We further de�ne W =

span
(

D1/2
−λp(r)

X̄
)

, satisfying dim(W) = n− p + 1. We can write:

λ↑p(M̃r) = max
U: dim(U)=n−p+1

min
z∈U,z 6=0

zT M̃rz
zTz

≥ min
z∈W,z 6=0

zT M̃rz
zTz

i.e.:

λ↑p(M̃r) ≥ min
u∈Rn−p+1,u 6=0

uTX̄T MrX̄u
uTX̄TD−λp(r)X̄u

= min
u∈Rp,u 6=0

∑n
q=p(xT

q u)2λ↑q(Mr)

uTX̄TD−λp(r)X̄u
≥ 0.

As a consequence, λ↑p(M̃r) ≥ 0. Combining both inequalities, we obtain
that λ↑p(M̃r) = 0.

The fact that the eigenvectors are shared comes from the following. Let
xp(r) be the eigenvector of D− rA associated to λp(r), i.e., [D− rA]xp(r) =
λp(r)xp(r). This can be re-written as Lrw

−λp(r)
xp(r) = 1

r xp(r).

The �rst Lemma introduces a formal mapping between the p-th smallest
eigenvalue of D− rA and the p-th largest eigenvalue of Lrw

τ for the choice
τ = −λ↑p(D − rA) Claim 6.1 however gives a result on the spectrum of
Lrw

τ for ζ2
p − 1 ≤ τ ≤ cΦ − 1, hence, unlike Lemma 6.1, it is not limited

to a single value of τ. The next lemma takes care of generalizing the result
considering the behavior of τ = λ↑p(D− rA) as a function of r.

Lemma6.2. Let D and A be the degree and adjacencymatrices of an arbitrary

graph. Let p be an integer ≥ 2. Suppose that there exists rp > 1 such that:

(i) ∀ r ≥ rp the eigenvalue λ↑p(D − rA) is simple; (ii) λ↑p(D − rp A) < 0.
Then:

∀ r ≥ rp, ∂rλ↑p(D− rA) < 0.

In words, once λ↑p(D− rA) becomes negative, it is strictly decreasing.

Proof of Lemma 6.2. Once again, let us write λp(r) = λ↑p(D− rA) to lighten
notations. Let p, rp be an integer ≥ 2 and a scalar > 1 (if they exist) such
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that λp(rp) < 0. Let r ≥ rp. As λp(r) is an eigenvalue, ∃ xp(r) with
||xp(r)||2 = 1 such that:

[D− rA]xp(r) = λp(r)xp(r),

which implies in particular that xp(r)T Axp(r) = 1
r xp(r)TD−λp(r)xp(r).

As we suppose λp(r) to be simple, we can apply the eigenvalue perturbation
theorem [GLO20, for instance]:

∂rλp(r) = −xT
p (r)Axp(r) = −

1
r

xp(r)TD−λp(r)xp(r). (6.3)

In Equation (6.3), D−λp(rp) � 0 (as λp(rp) < 0 by hypothesis), consequently
∂rλp(r)

∣∣
r=rp

< 0. We now want to show that for all r > rp, ∂rλp(r) < 0.
We proceed with a proof by contradiction.

Suppose that there exists a value r′ > rp such that ∂rλp(r)
∣∣
r=r′ ≥ 0. From

Equation (6.3) it follows that a necessary (but not su�cient) condition to be
veri�ed is that λp(r′)≥0. From a continuity argument on the function λp(r),
and as λp(rp) < 0 and λp(r′) ≥ 0 with r′ > rp, there exists r′′ ∈ (rp, r′)
such that ∂rλp(r)

∣∣
r=r′′ > 0 and λp(r′′) < 0. Invoking once again Equation

(6.3), no such r′′ can exist, invalidating the hypothesis we made by absurd.
We thus conclude that

∀ r ≥ rp, ∂rλp(r) < 0, (6.4)

�nishing the proof.

The eigenvalue simplicity assumption of this lemma is technical and en-
ables us to properly de�ne and manipulate the derivative of the p-th small-
est eigenvalue. In case of multiplicity, the tools involved are more compli-
cated [GLO20] and not included here. The simplicity assumption is however
veri�ed with high probability on the DCSBM-generated graphs considered in
Claim 6.1, hence justifying our assumption.

With Lemma 6.2 we established a relation between τ in the regularized
Laplacian and r in the Bethe-Hessian, showing that to larger values or r
should correspond larger values of τ. We now enunciate our �nal supporting
lemma which states that isolated eigenvalues of Hr are mapped to isolated
eigenvalues of Lrw

τ while bulk eigenvalues are mapped to bulk eigenvalues.

Lemma 6.3. Let G(V , E) be a graph with k classes generated from the sparse

DCSBM and let D and A be the corresponding degree and adjacency matrices

respectively. Consider an integer p between 2 and k and let ζp be de�ned as

per Equation (5.3) and r ≥ ζp. If λ↑p(D− rA) < 0 is isolated with associated

eigenvector xp, then xp is an eigenvector of Lrw
−λ↑p(D−rA)

, whose correspond-

ing eigenvalue is also isolated. Otherwise, for 1 ≤ p ≤ n and r > 1, if
λ↑p(D − rA) is a bulk eigenvalue of D − rA, then the corresponding eigen-

value of Lrw
−λ↑p(D−rA)

is also a bulk eigenvalue.
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Proof of Lemma 6.3. Consider the values {ζp}2≤p≤k as de�ned in Eq.(5.3).
As G(V , E) is generated from a DCSBM we know from Claim 5.1 that these
k − 1 values of ζp exist with high probability. De�ne ζk+1 =

√
cΦ and

�x p an integer such that 2 ≤ p ≤ k. Let us write once more λp(r) =

λ↑p(D − rA) to lighten notations. Note that λ↑p(Hζp) = 0, ∀ 2 ≤ p ≤ k
and λ↑k+1(Hζk+1) = on(1), as shown in [SKZ14]. We thus have λp(ζp) < 0,
∀ 2 ≤ p ≤ k + 1 and it is isolated by hypothesis. We can apply Lemma 6.2,
for rp = ζp: for all r ≥ ζp, ∂rλp(r) < 0 and λp(r) < 0. Consequently,
there exists a unique value of r′ ≥ r, satisfying λp+1(r′) = λp(r). From
Lemma 6.1, we know that:

• as λp(r) < 0: xp(r), the eigenvector associated to λp(r), is also the
eigenvector of Lrw

−λp(r)
associated to its p-th largest eigenvalue, 1/r.

• as λp+1(r′) < 0: xp+1(r′), the eigenvector of D − r′A associated to
λp+1(r′), is also the eigenvector of Lrw

−λp+1(r′)
= Lrw

−λp(r)
associated to

its (p + 1)-th largest eigenvalue, 1/r′.

Thus, the p-th (resp. (p + 1)-th) largest eigenvalue of Lrw
−λp(r)

is 1/r (resp.
1/r′). Consider r ≥ ζp. By hypothesis, λp(r) is an isolated eigenvalue, that
is, we can write

On(1) = λp+1(r)− λp(r) = λp+1(r)− λp+1(r′)

=
∫ r

r′
dx ∂xλp(x) = κ(r− r′)

for some constant κ = On(1) independent of n, representing the average
value of ∂xλp(x) on the integration interval. The constant κ = On(1) be-
cause for any r, r′ = On(1), we have that λp(r), λp(r′) = On(1). The
eigengap for Lrw

−λp(r)
is 1/r− 1/r′ = (r′ − r)/(rr′), thus

On(1) = On
(
λp+1(r)− λp(r)

)
= On(r− r′) = On

(
1
r
− 1

r′

)
= On(1).

So, if λp(r) is isolated, the eigenvalue 1/r of Lrw
τ is isolated as well.

On the other hand, if λp(r) is in the bulk, then ∃ q : |λp(r)− λq(r)| =
on(1). By an argument of continuity on λp(r), one can analogously de�ne
an r′ satisfying λp(r) = λq(r′), concluding that in this case |r− r′| = on(1)
and so eigenvalues in the bulk are mapped into eigenvalues in the bulk.

With this proof we conclude this technical section in which we enunciated
and proved three lemmas that formally relate the eigenvalues of Hr with
those of Lrw

τ . We now proceed with an informal proof of Claim 6.1.

6.2.2 informal proof of claim 6.1
Based on Lemmas 6.1-6.3 and Claim 5.1 we now proceed to the justi�cation
of Claim 6.1. Once again, we adopt the notation λ↑p(D− rA) = λp(r).
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The �rst part of Claim 6.1 asserts that for ζ2
p − 1 ≤ τ ≤ cΦ − 1 the p

largest eigenvalues of the matrix Lrw
τ are isolated. According to Claim 5.1, for

ζp ≤ r ≤
√

cΦ the eigenvalue λp(r) is isolated. Thanks to Lemma 6.2, since
λp(ζp) < 0 we have: ∂rλp(r) < 0 for all r in the interval ζp ≤ r ≤

√
cΦ,

implying λ↑p(D − rA) < 0 for all r in the interval ζp ≤ r ≤
√

cΦ. The
hypotheses of Lemma 6.1 and Lemma 6.3 are therefore veri�ed. We can then
assert that the eigenvalue 1/r is the p-th largest of the matrix Lrw

−λ↑p(D−rA)

and it is isolated.
Further exploiting Lemma 6.2, letting τ(r) = −λ↑p(D − rA), we have

∂rτ(r) > 0 for all r in the interval ζp ≤ r ≤
√

cΦ. The function τ(r) is thus
bijective and increasing on this interval. Since the eigenvalue λ↑p(D− rA)

is isolated for all ζp ≤ r ≤
√

cΦ, the corresponding eigenvalue of Lrw
τ(r)

equal to 1/r is isolated for

ζ2
p − 1 = −λp(ζp) ≤ τ ≤ −λp(

√
cΦ).

Note now that, for 1 ≤ p ≤ k, λ↑p(D −
√

cΦA) ≤ λ↑k+1(D −
√

cΦA) =

cΦ− 1. This implies that for ζ2
p − 1 ≤ τ ≤ cΦ− 1, the top p eigenvalues

of Lrw
τ are certainly isolated.

For the particular case where r = ζp, by de�nition, −λ↑p(D − ζp A) =

ζ2
p− 1 > 0 and the result is straightforwardly obtained by applying Lemma

6.1, concluding our argument.

With the justi�cation of our main result being settled, we are now in po-
sition to close this chapter with some concluding remarks.

6.3 conclusion
In this chapter we showed that there is an explicit relation between the
Bethe-Hessian and the regularized Laplacian matrices. Building on this rela-
tion, we generalized our Claim 5.1 to Lsym

τ . In the end of Chapter 5 three ques-
tions concerning SC with the regularized Laplacian matrix were left open.
The answers to these questions are the main contribution of this chapter
and are summarized as follows.

• In all the works related to t regularization [QR13; Ami+13; JY13; LR+15;
LLV18] the approach chosen to study SC consists in providing a bound
to ‖M−E[M]‖, where M is the matrix under study and E[M] its ex-
pectation. If on the one hand regularization provides good results for
moderately dense graphs, on the other hand it is not su�cient to give
tight bounds in the regime c = On(1). In this chapter we used a com-
pletely di�erent method that justi�es the role of regularization start-
ing from the inner isolated eigenvalues of non-backtracking matrix,
studied in Chapter 5. Our analysis, although not formally rigorous,
holds in the sparse regime c = On(1).
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Figure 6.3: Clustering on the eigenvector associated to the second largest eigen-
value of Lrw

τ . The circles indicate values of τ ∈ [1, c2]: the colour code
and the marker size distinguish the values of τ. The squares are ob-
tained for τ = c, while the orange line (with pentagons) is obtained
for τ = ζ2

2 − 1. Superimposed to this line, the diamonds are the out-
put of Algorithm 5.1. For this simulation n = 50 000, k = 2, c = 10,
θi ∼ [U (3, 15)]5, π = 12. Averages are taken over 5 realizations.

• After considering the sparse regime c = On(1), the second natural
question concerns whether or not the matrix Lsym

τ exhibits isolated
eigenvalues down to the detectability threshold and, if so, for what τ.
Claim 6.1 gives a precise result stating that indeed the detectability
threshold can achieved specifying the interval of values of τ that can
accomplish this task.

• An evidence that appeared from the earlier works on regularization
is that small values of τ perform better in practice than large ones,
even though no clear explanation was provided. We showed that the
optimal Laplacian regularization ranges from 0 (for easy problems) to
cΦ− 1 for hard ones, naturally justifying the adoption of small regu-
larizations. Figure 6.3 provides further evidence showing for di�erent
τ the performance obtained from Algorithm 4.1 setting M = Lrw

τ and
con�rming that the proposed choice of τ is optimal.

As a �nal remark, we recall that also in this case Claim 6.1 can be extended
to the setting in which the matrix CΠ potentially has negative eigenvalues.
All comments made in Chapter 5 remain valid also in this case, with the
di�erence that the regularizer τ = ζ2

p − 1 > 0 even if ζp < 0. The “dis-
assortative” eigenvalues will be associated to negative eigenvalues of Lrw

τ ,
satisfying ζpLrw

ζ2
p−1 = 1.

Chapter 5, 6 have been devoted to the formulation of two claims under
the DCSBM assumption. The resulting Algorithm 5.1 has been introduced as
a meta-algorithm for user readability. In the next chapter we consider the
problem of how Algorithm 5.1 can be e�ciently implemented on real graphs
that go beyond the DCSBM assumption. Further considerations will be made
on the computational complexity and run time of the resulting algorithm.
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Abstract

This chapter considers how to implement Algorithm 5.1 to obtain an e�cient spectral
clustering (SC) method for community detection (CD) on arbitrary graphs. In partic-

ular, as a main contribution we provide an e�cient estimator of the number of classes

k, based on Claim 3.3 of [SKZ14] and subsequently show how to retrieve the values

{ζp}p=1,...,k. The proposed algorithm is then extensively tested on several real-world

graphs and its performance is shown to typically outperform the one achieved by the

competing state-of-the-art SC techniques.
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Chapter 5 showed that a sequence of carefully parametrized Bethe-Hessian
matrices {Hζp}p=1,...,k can be exploited to perform SC in sparse graphs with
a heterogeneous degree distribution. All the results concerning the values
{ζp}p=1,...,k and the corresponding embedding eigenvectors {xp}p=1,...,k are
based on the assumption that the graph G(V , E) is a realization of a sparse
DCSBM with n → ∞ nodes. Real-world graphs, however, force us to seri- From DCSBM to

real-world graphsously face three main problems. The �rst is that the setting n� 1, while it
interestingly corresponds to big datasets, it cannot be given for granted. Con-
sequently, an e�cient and practical algorithm for CD cannot rely on asymp-
totic results. Related to this, the second problem lies in the fact that, as we
already discussed in Chapter 1, for �nite n there is not a clear boundary be-
tween the sparse and the dense settings and our proposed algorithm must be
well de�ned (and e�cient) for any average degree. Finally, short cycles are
often observed in real social graphs [HL71]: this fact may put in question our

111
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theoretical results based on the Bethe approximation, which is appropriate
for tree-like graphs.

It has however to be noted that, while Chapter 5 only considers the DCSBM
setting to justify Algorithm 5.1, the de�nition of {ζp}p=1,...,k ensures their
existence for any input graph and it does not rely on the n � 1, nor the
sparsity, nor the DCSBM assumptions. In fact, based on several empirical tests,
we observed that the following properties of the non-backtracking matrix
(De�nition 1.8) seem to hold in general:Spectrum of B

for the football
dataset [GN02] • All complex eigenvalues come in pairs of complex conjugates and

most of them are bounded by a circle on the complex plane of radius

rradius ≈
√

λ
↓|·|
1 (B).

• The number of real eigenvalues of B, di�erent from {−1, 0, 1, λ
↓|·|
1 (B)},

is even. Half of the eigenvalues are larger in modulus than rradius,
while the other half lies between 1 and rradius. All of them are isolated.

Given the connection between the non-backtracking and the Bethe Hes-
sian matrices, from these two points, we can claim that the steps of Algo-
rithm 5.1 are all well de�ned on arbitrary graphs. By all means, we can con-
sequently say that the set of ζp’s are a property of the graph for which we
have a clear interpretation for the DCSBM. Based on these observations, the
goal of this chapter is to design e�cient routines to accomplish the steps of
Algorithm 5.1 on an arbitrary input graph.

Among the questions that have to be explicitly answered in the following,
there is the one concerning the estimation of k, which is necessary to de�ned
the set {ζp}p=1,...,k. Building on the result of [SKZ14], we develop an e�cient
algorithm (especially for large values of k) to estimate k, which we recall is
a typically hard task to accomplish when performing SC.

Our �ndings result in Algorithm 7.1 which is tested on some real graphs
benchmarks comparing its e�ciency against the competing spectral meth-
ods. The results are reported in Table 7.1.

7.1 implementation details
In this section we describe in detail how to e�ciently implement the subrou-
tines of our proposed algorithm that we summarize in Algorithm 7.1 which
is the implementation adopted in the CoDeBetHe.jl package.

Before getting into the details of the steps of Algorithm 7.1, let us recall
that a further speci�city of real graphs is their possibility to be inherently
made of disjoint components. We have instead so far worked with the as-
sumption that G(V , E) has a giant component and that the communities are

Each connected

component of the

graph is treated

independently
contained within the giant component. In practice, communities may live
in disconnected subgraphs (in a two-class DCSBM, this would correspond to

https://github.com/lorenzodallamico/CoDeBetHe.jl
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Algorithm 7.1 : Spectral CD in sparse and heterogeneous graphs
Input : Adjancency matrix of undirected, connected graph G(V , E)
Output : Estimated number of communities k̂, estimated label

community vector ˆ̀ .
1 begin

2 k̂← estimate_number_of_classes (Algorithm 7.2);
3 ζ ← compute_ζ (Algorithm 7.3);
4 Initialize X ∈ Rn×k̂;
5 for p = 1 : k do

6 X•,p ← xp ∈ Rn, where xp is the eigenvector with
eigenvalue λ↑p(Hζp) = 0;

7 end

8 Normalize the rows of Xi,• ← Xi,•/‖Xi,•‖;
9 Estimate community labels ˆ̀ as output of k̂-class k-means on the

rows of X;
10 return k̂, ˆ̀ .
11 end

setting cout = 0). In this case, one can perform a two-stage clustering. First
the connected components are detected, looking into the eigenvectors with
zero eigenvalue of Hζ1 = D − A. Afterwards, each connected component
is treated independently. We will thus consider, without loss of generality,
that the real graphs which we will consider are connected.

7.1.1 estimation of k

The problem of estimating the number of communities in an unsupervised
manner is in general non-trivial. Methods based on the non-backtracking
rather than Bethe-Hessian matrix have been studied and exploited to e�-
ciently recover communities regardless of the generative model [LL15].

A possible way to de�ne an estimator of k is as the largest number of
negative eigenvalues of Hr as a function of r, or, more succinctly,

k̂ = max
r≥1
|i : λi(Hr) < 0| .

This estimator is well de�ned on arbitrary graphs and has a deep inter-
pretation rooted in statistical physics. However, a direct implementation of
this estimator is ine�cient because it requires to compute several times the
eigenvalues of Hr for di�erent values of r. A crucial result of [SKZ14] is to
determine for the SBM (but the result can be easily generalized to the DCSBM)
the value of r for which the number of negative eigenvalues of Hr is maximal

and is precisely equal to r =
√

λ
↓|·|
1 (B) =

√
cΦ. This value of r can be e�-

ciently estimated from the degree sequence, since cΦ ≈ ∑i∈V d2
i / ∑i∈V di.
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With extensive simulations, we observed however that on general graphs
cΦ is generally not a good approximation for λ

↓|·|
1 (B). For this reason, it is

best to compute directly the leading eigenvalue. This can be done e�ciently,
because all eigenvalues of B ∈ {0, 1}|Ed|×|Ed| di�erent from ±1 are also
eigenvalues of the smaller matrix B′ ∈ R2n×2n [Krz+13; CZ20, for instance],

B′ =

(
A In − D

In 0

)
(7.1)

so all computation involving the eigenvalues of B can be performed on the
matrix B′. Computing the p largest eigenvalues of a matrix with m non-
zero elements costs O(mp2) with state-of-the-art methods such as restarted
Arnoldi methods [Saa92], hence λ

↓|·|
1 (B) can be e�ciently computed in O(cn).

This leads us to the following estimator of k, adopted in the remainder

Estimator of the

number of

communities

k̂ =

∣∣∣∣∣∣i : λi

H√
λ
↓|·|
1 (B)

 < 0

∣∣∣∣∣∣ .

As we showed in Chapter 6, an estimator of k can be designed also on the
regularized Laplacian matrix as detailed in the following remark.

Remark 7.1 (Estimating k from Lsym
τ ). Remark 6.1 states that k can also be

estimated using the regularized Laplacian matrix Lsym
τ as follows

k̂ =

∣∣∣∣∣∣i : λi

(
Lsym

λ
↓|·|
1 (B)−1

)
>

1√
λ
↓|·|
1 (B)

∣∣∣∣∣∣ .

The main advantage of this estimator with respect to the one based on Hr

is that one needs to compute the eigenvalues with largest rather than smallest

algebraic value that, generally, can be done more e�ciently.

Moreover, suppose that one wants to include also disassortative communities

in the estimation of k. Referring to DCSBM this is the case in which CΠ may

have also negative eigenvalues. The estimators of k for the Bethe-Hessian and

the regularized Laplacian can be written, respectively, as

k̂ =

∣∣∣∣∣∣i : λi

H√
λ
↓|·|
1 (B)

 < 0

∣∣∣∣∣∣+
∣∣∣∣∣∣i : λi

H
−
√

λ
↓|·|
1 (B)

 < 0

∣∣∣∣∣∣
k̂ =

∣∣∣∣∣∣i :

∣∣∣∣∣λi

(
Lsym

λ
↓|·|
1 (B)−1

)∣∣∣∣∣ > 1√
λ
↓|·|
1 (B)

∣∣∣∣∣∣ ,

evidencing that Lsym
τ allows one to estimate k using a single value of τ, while

Hr requires two values of r. In the remainder, the “disassortative contribution”
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is however not considered and consequently the two estimators are essentially

equivalent. For notation convenience, we will refer to the one based on Hr, but

all the results shown below can be generalized to Lsym
τ .

Let us now consider the problem of counting the number of negative
eigenvalues of H√ρ, where ρ = λ

↓|·|
1 (B) for convenience. A naïve imple-

mentation simply consists in computing the p smallest eigenvalues H√ρ

and check if they are all negative. If the condition is met, then p is increased
to p + 1 and the procedure is iterated until the �rst positive eigenvalue of
H√ρ is found. This implementation is however non e�cient, especially for
large k, since it requires to compute several times the same eigenvalues. The
complexity of this method scales as O(nck̂3). A recent workaround strategy
[RM15; Tre+16a; Tre+16b] based on random projections and polynomial ap-

proximations allows us to de�ne an e�cient routine that initializes p to a
value close to k̂, which is then computed in a few iterations.

Random projections

Denote with Y ∈ Rn×k̂ the matrix containing in its columns the eigenvec-
tors associated to the negative eigenvalues of H√ρ. Note that, since H√ρ is
Hermitian, YTY = Ik̂. Let f ∈ Rn be a random vector with zero mean and
E[ f f T] = In. An estimator of k̂ unfolds from the following relations

k = Tr(Ik̂) = Tr(YTY) = Tr(YYT) = Tr
(
YYT E[ f f T]︸ ︷︷ ︸

In

)
= E

[
Tr(YYT f f T)

]
= E

[
Tr( f TYYT f )︸ ︷︷ ︸

∈R

]
= E

[
f TYYT f

]
= E

[
f TY YTY︸︷︷︸

Ik̂

YT f
]
= E

[
‖YYT f‖2

]
. (7.2)

Equation (7.2) shows that k̂ can be estimated taking the expectation of the
square norm of YYT f . At this stage, this procedure is however pointless,
since the matrix Y (whose size is determined by k̂) needs to be computed.
We now proceed showing that an approximate method can be devised to
estimate k̂ without directly computing Y.

Polynomial approximation

Let us introduce the door function Θab(x) = Ix∈[a,b]. The number of neg-
ative eigenvalues of H√ρ is equal to the number of eigenvalues of H′√ρ =

H√ρ − λ↑1(H√ρ)In in the interval [0,−λ↑1(H√ρ)]. Letting Λ′√ρ ∈ Rn×n

be the diagonal matrix containing the eigenvalues of H′√ρ, we denote with(
Θab(Λ′√ρ)

)
ij = Θab

((
Λ′√ρ

)
ij

)
. Denoting for simplicity λ↑1(H√ρ) = λmin,

the following relation holds
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YYT = Y Θ0,−λmin(Λ
′√

ρ) YT ≡ Θ0,−λmin(H′√ρ).

Obtaining the expression of Θ0,−λmin(Hr) is still unpractical because all
eigenvalues must be computed. An approximation of YYT ≈ ỸỸT can how-
ever be e�ciently obtained replacing Θ0,−λmin(x) with its polynomial ap-
proximation1 Θ̃0,−λmin(x) of order Q. Denoting with c0≤q≤Q the coe�cients
of the polynomial, in fact

ỸỸT = Θ̃0,−λmin(H′√ρ) =
Q

∑
q=0

cq

(
H′√ρ

)q
,

then, exploiting the fact that H√ρ and H′√ρ share the same eigenvectors,Chebychev

(blue) and

Jackson-Checychev

(red) approximations

of the step function

0.0

0.5

1.0

YYT ≈ ỸỸT . This allows us to de�ne an estimator of k̂ as follows2

k̂ ≈ 1
N

N

∑
i=1

∥∥∥∥∥ Q

∑
q=0

cq

(
H′√ρ

)q
fi

∥∥∥∥∥
2

, (7.3)

where N denotes the number of random vectors generated to compute the
empirical mean. This estimator of k̂ is obtained in O(cnNQ) operations.
Due to the good concentration properties of their norm, if fi are Gaussian
random vectors, a very small value of N (e.g. N = 4) is su�cient to obtain a
good estimator of the expectation. On the other hand, the value of Q must be
carefully chosen to guarantee a good approximation of the step function. In
practice, it is convenient to increase Q until the variation in the estimation
of k̂ remains below a given threshold. To give an order of magnitude, Q is,
for the typical problems it was tested on, of order of 100. The fact that the
estimator of k̂ based on random projection has a k̂-independent complexity,
makes it particularly suited for large values of k̂.

The strategy to e�ciently compute the number of negative eigenvalues is
then to give it a �rst rough approximation as per Equation (7.3) and then pro-
ceed with the naïve method detailed before to compute this quantity exactly.
Empirically, it is convenient to compute an initial estimate of k̂ for k̂ ≈ 5
or greater. For smaller values, the naïve direct computation might be more
e�cient, but both algorithms provide a fast solution in this case.

The results so far presented allow us to detail Algorithm 7.2 to e�ciently
estimate the number of communities on an arbitrary graph. For simplicity,
we indicate here Q as an input of the algorithm. Neglecting the dependence

1 The choice of which polynomial approximation to consider is not straightforward. One pos-
sible choice is to use Chebychev polynomials as they have a guarantee on the in�nite norm
of the approximation error. However, they tend to create Gibbs oscillation around sharp cut-
o�s of the function to approximate. As the function we wish to approximate here is a step
function, it is customary to choose Jackson-Chebychev polynomials which explicitly dampen
these unwanted oscillations [Jay+99].

2 Note that, while k̂ ∈N, the estimator in Equation (7.3) is de�ned in R.
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Algorithm 7.2 : estimate_number_of_classes

Input : Adjancency matrix of undirected connected graph G(V , E),
Q: order of the polynomial approximation, N: number of
random vectors

Output : Estimated number of commnities k̂
1 begin

2 ρ← λ
↓|·|
1 (B′), with B′ as in Equation (7.1);

3 H′√ρ ← H√ρ − λ↑1(H√ρ)In;
4 {cq}0≤q≤Q ← Jackson-Chebishev coe�cients of the polynomial

approximation of Θ0,−λ↑1(H′√ρ)
;

5 Generate N Gaussian random vectors with zero mean and
idendity covariance matrix f1≤i≤N ∈ Rn;

6 kinit = ceil

(
1
N ∑N

i=1

∥∥∥∑Q
q=0 cq

(
H′√ρ

)q
fi

∥∥∥2
)

;

7 Compute λ↑i (H√ρ) for 1 ≤ i ≤ kinit;
8 k← arg max

i

(
λi(H√ρ) < 0

)
for 1 ≤ i ≤ kinit;

9 while λ↑k (H√ρ) < 0 do

10 k← k + 1;
11 Compute λ↑k (H√ρ) < 0;
12 end

13 return k− 1;
14 end

on Q and N, the complexity of Algorithm 7.2 scales in the worst case sce-
nario in which kinit is very far from k̂ as O(nck̂3). However, if kinit is close to
k̂, Algorithm 7.2 converges in O(nck̂2) operations. To give a practical mea-
sure of computational times we tested Algorithm 7.2 on a laptop3 for di�er-
ent values of k on graphs generated from the stochastic block model (SBM)
with n = 105, c = 8, cout = 4/k. The value of k̂ was computed for
k = 2, 8, 30 in 8, 8, 10 seconds.

We now move to the analysis of the second subroutine, dedicated to esti-
mate the values of ζp.

7.1.2 estimation of {ζ p}

A crucial step of Algorithm 7.1 is to compute the vector ζ ∈ Rk̂, containing
the optimal values of r in which the eigenvalues of Hr should be computed.
In the remainder, for simplicity, we will denote k = k̂. From Claim 5.1, a
simple relation holds between the values ζp and the isolated eigenvalues of
B for the DCSBM, in fact

3 The laptop’s RAM is 7.7Gb with Intel Core i7-6600U CPU @ 2.6GHz x 4.
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ζp =
c

λ↓p(CΠ)
+ on(1) =

λ
↓|·|
1 (B)

λ
↓|·|
p (B)

+ on(1). (7.4)

This estimation of ζp via B′, de�ned in Equation (7.1) is computationally
e�cient but we observed that it can be quite inaccurate for graphs not gen-
erated from the DCSBM. Conversely, a naïve line search for ζp ∈ (1,

√
ρ)

(where ρ = λ
↓|·|
1 (B)) satisfying λ↑p(Hζp) = 0 is computationally ine�cient.

We propose here a faster method, motivated by a Courant-Fischer theo-
rem argument (Theorem 6.1). In a few words, starting from an initial guess
r0, we devise an iterative sequence r0, r1, . . . , such that rt → ζp. The conver-
gence is guaranteed when setting r0 = ζp+1, under the convention ζk+1 =√

ρ. The values of ζp are then estimated from the largest, ζk, to the small-
est, ζ2. Let us now get to the mathematical details of this subroutine. We
denote by XT

rt
= (xT

1 (rt), . . . , xT
p (rt))T ∈ Rn×p where xp(rt) is the eigen-

vector of Hrt corresponding to the p-th smallest eigenvalue, λ↑p(Hrt), while
Λrt = diag

(
λ↑1(Hrt), . . . , λ↑p(Hrt)

)
. For another value r′ 6= rt, and apply-

ing the Courant-Fischer theorem, we can write

λ↑p(Hr′) = min
U:dim(U)=p

max
z∈U,z 6=0

zT Hr′z
zTz

≤max
u∈Rp

uTXT
rt

Hr′Xrt u
uTu

= λ↓1(XT
rt

Hr′Xrt)

i.e.:

λ↑p(Hr′) ≤ λ↓1(XT
rt
[(r′2 − rt

2)In − (r′ − rt)A + Hrt ]Xrt)

≤ (r′2 − rt
2) + λ↓1(Λrt − (r′ − rt)XT

rt
AXrt).

We can further simplify the earlier expression by exploiting the identity:

Λrt = XT
rt

Hrt Xrt = (rt
2 − 1)Ip + XT

rt
DXrt − rtXT

rt
AXrt .

We thus obtain

λ↑p(Hr′) ≤
1
rt

[
(r′ − rt)(1 + r′rt) + λ↓1

(
(rt − r′)XT

rt
DXrt + r′Λrt

)]︸ ︷︷ ︸
frt (r

′)

.

(7.5)

We now study the function frt(r′) for rt ∈ (ζp,
√

ρ) and de�ne rt+1 ∈
(ζp, rt) as the solution (if it exists) to

frt(rt+1) = 0. (7.6)

The idea is to iteratively approach ζp from the right and substitute rt ← rt+1.
If rt+1 ∈ (ζp, rt) as de�ned above exists, then {rt}t≥0 is a lower-bounded de-
creasing sequence: it thus converges to a limit r∞ (potentially di�erent from
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Figure 7.1: Plot of the frt(r
′) (in purple). The blue continuous line indicates the

value of rt, the red dashed dotted line the theoretical value of ζp =

c/λ↓p(CΠ) for the DCSBM. The two dashed black lines are the two roots
of frt(r

′), the smaller of which is rt+1. For this simulation n = 50 000,
k = 2, c = 5, cout = 2.5, r =

√
cΦ, θi ∼ [U (3, 10)]3, π ∝ 1k.

ζp). Exploiting [RB69, Theorem in I.4], denoting with F, G two Hermitian
matrices and γ a scalar, λ↓1(F + γG) is a convex function of γ. As a conse-
quence, the function frt(r′) is convex and has either no root or two roots.
Since lim|r′|→∞ frt(r′) = +∞, it is enough to �nd a value of r′ for which
frt(r′) < 0 to prove that this function has two roots. With a straightforward
computation, one can verify that frt(rt) < 0, so frt(r′) has two roots, sat-
isfying rt+1 < rt and r+ > rt. By construction, since λ↑p(Hr′) is negative
in the considered interval and λ↑p(Hr′) ≤ frt(r′)/rt, if frt(rt+1) = 0, then
ζp ≤ rt+1. Consequently, frt(rt+1) = 0 has a unique solution satisfying

ζp ≤ rt+1 < rt

and the algorithm converges to r∞ = lim
t→∞

rt ≥ ζp. We are left to prove that
r∞ = ζp. By convergence of rt, we have rt+1 − rt = ot(1). Plugging this
relation solution into Equations (7.5,7.6), we obtain

λ↓1(rt+1Λrt+1) = rt+1λ↑p(Hrt+1) = ot(1).

Since λ↑p(Hr) = 0 has a unique solution (r = ζp) in the interval r ∈ (1,
√

ρ),
we obtain rt = ζp + ot(1) and so

r∞ = ζp.

The initial value of r can be chosen as r0 = ζp+1 (setting ζk+1 =
√

ρ)
that certainly falls in the right interval for all the ζp.

Summarizing, the algorithm builds on two parts: (i) the computation of
a p × p matrix obtained from the eigenvectors of Hrt with computational
cost of O(ncp2), (ii) a subsequent line-search using this matrix, with com-
putational cost O(p2). The advantage of this method is that the line search
(which requires many iterations) is computationally cheap, while the most
expensive part of the algorithm needs to be performed much fewer times
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Algorithm 7.3 : compute_ζ

Input : adjacency matrix of a connected, undirected graph G ,
number of classes k

Output : Vector ζ = {ζ1, . . . , ζk}
1 begin

2 r ←
√

λ
↓|·|
1 (B′), where B′ is de�ned in Equation (7.1) ;

3 p← k;
4 while p > 1 do

5 repeat

6 Compute Λr = diag
(

λ↑1(Hr), . . . , λ↑p(Hr)
)

and
Xr ∈ Rn×p, with HrXr = XrΛr;

7 Γr ← XT
r DXr ∈ Rp×p ;

8 r∗ ← r′ : λ↓1(r
′Λr + (r− r′)Γr) = (r− r′)(1 + rr′),

with line-search on r′ ∈ (1, r);
9 r ← r∗

10 until convergence;
11 δ← multiplicity of λ↑p(Hr) = 0;
12 Set ζp, ζp−1, · · · , ζp−δ+1 to r;
13 p← p− δ;
14 end

15 return ζ = {ζ1, . . . , ζk};
16 end

with respect to the greedy line-search to obtain the same accuracy. The total
complexity of the algorithm needed to compute the vector ζ = (ζ1, . . . , ζk)

T ,
scales as O(nck3).

Algorithm 7.3 summarizes our proposed routine to obtain the vector ζ.
Note that, although the subroutine compute_ζ only outputs the vector ζ, it
can also be used to directly compute the informative eigenvectors {xp}. Fig-
ure 7.1 provides a typical iteration of Algorithm 7.3, while Figure 7.2 shows
the output of the computation of ζ and con�rms the accuracy of the pro-
posed algorithm. On the top line the algorithm is tested on a network created
from the DCSBM, for which λ

↓|·|
1 (B)/λ

↓|·|
p (B) is a valid estimator for ζp. The

horizontal line indicates√ρ =
√

cΦ which is the upper bound of ζp. In our
simulations, the a�nity matrix C ∈ Rk×k is generated randomly (see the
caption of Figure 7.2), for the �rst two points we obtained λ↓3(CΠ) <

√
cΦ,

invalidating Assumption 3.1. In this case we see that c/λ↓p(CΠ) >
√

cΦ
and the corresponding estimated value of ζp saturates at

√
cΦ. On the con-

trary, whenever Assumption 3.1 is veri�ed, the estimate of ζp is correct.
In the bottom line we compare the two methods to estimate ζp on the

three real networks that clearly show that these two methods are di�erent
on graphs not generated from the DCSBM. Given that Subroutine 7.3 provides
a direct computation of values of ζp, it should be preferred.
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Figure 7.2: (Top: DCSBM setting) Exact value of c/λ↓p(CΠ) (p = 2 on the left and
p = 3 on the right) in blue, compared to the estimate of ζp obtained
using the dominant eigenvalues of B (green) and its direct computation
using Algorithm 7.3 (red), for problems of di�erent hardness. For this
simulation, n = 50 000, k = 3, θi ∼ [U (3, 10)]3, c = 10. For each point
πi ∼ N (1/k, 1/2k) and the o�-diagonal elements of C are distributed
as∼ N (cout, cout/k) and cout : 0.1→ 7.5. (Bottom: real networks) Es-
timate of the values of ζp as function of p, computed as λ

↓|·|
1 (B)/λ

↓|·|
p (B)

(green squares) vs the direct computation of ζp as the output of Subrou-
tine 7.3 (red diamonds) on the three real networks taken from [LK14].
The value of k̂ is estimated according to Algorithm 7.2.

For illustrative purposes, we tested the execution time of Algorithm 7.3
for a stochastic block model (SBM) network with k = 4 classes of equal size,
n = 105, cin = 26.20 on the diagonal elements of C and cout = 4.60 for the
o� diagonal elements. The values of ζp were computed to machine precision
in approximately 5 seconds on a laptop using our CoDeBetHe.jl Julia
implementation. The complexity of this subroutine scales linearly with n,
and thus can be applied to large networks but cubically with respect to k (and
not quadratically as usual in the spectral clustering context) decreasing the
computational e�ciency when a rather large number of classes is present.

We now proceed with the last technical step of Algorithm 7.1, which con-
cerns the projection of the embedded points on a unitary hypersphere.

7.1.3 projection of the embedded points
on a hyper-sphere

The study performed so far identi�es the presence of k informative eigenval-
ues and describes the content of the associated k eigenvectors X ≡ [x1, . . . , xk] ∈
Rn×k with xp the eigenvector associated to the p-th smallest eigenvalue
of Hζp (in particular, the vectors xp’s need not be orthogonal). The rows

https://github.com/lorenzodallamico/CoDeBetHe.jl
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X1,•, . . . , Xn,• ∈ Rk of the matrix X form a k-dimensional feature for every
node, which are used in a last small-dimensional clustering step, usually em-
ploying the k-means algorithm. The fact that k-means is particularly e�cient
when the low-dimensional clusters are quite “isotropic” strongly motivates
the need for the entries of the vectors xp not to be a�ected by the node
degrees (which would otherwise spread the clusters unevenly).The embedding

obtained by

Algorithm 7.1 on the

graph polbooks
with (bottom)

and without (top)

the projection step

Yet, to further tackle residual degree dependence, a classical method, prior
to k-means, consists in normalizing all vectors Xi,• to ‖Xi,•‖ = 1 (this is
Step 4 of Algorithm 4.1) . This method is motivated by the assumption that
the degree dependence in each Xij is separable from the label dependence,
a fact that is veri�ed in su�ciently dense DCSBM networks [Jin+15] and to
some extent also in sparser graphs [QR13]. Besides, under this normalization,
the k-means algorithm is restricted to the unitary hypersphere, improving
its convergence to the genuine solution, especially for large values of k.

As such, while our proposed algorithm naturally discards degree depen-
dence in the entries of X under the DCSBM setting, the reality of practical
networks may disrupt this expected behavior and the projection of the vec-
tors Xi,• on the unit hyper-sphere both alleviates this deleterious e�ect and
further improves the convergence of k-means. We thus adopt this normaliza-
tion step in our �nal Algorithm 7.1 and will con�rm its practical gains when
clustering real graphs.

7.1.3.1 Computational complexity

The total theoretical complexity of Algorithm 7.1 is dominated by Algo-
rithm 7.2 and 7.3 that both run in O(nck3), as the k-means step costs only
O(nk2). This is to compare with the usual complexity of spectral cluster-
ing algorithms on sparse graphs that are in O(nck2) [see for instance TL20].
This additional cost comes with a better classi�cation performance in many
real-world graphs, as discussed in the next section. To give an order of mag-
nitude of computation times, running Algorithm 7.1 on a SBM with n = 105

(resp., 106), k = 4, cin = 26.20 on the diagonal elements of C and cout =

4.60 on the o� diagonal terms takes approximately 15 (resp., 450) seconds
if k is not known and 6 (resp., 100) seconds if k is known a priori.

7.2 numerical results on real graphs
In this section we compare the performance of Algorithm 7.1 versus compet-
ing spectral methods on real-world networks [LK14; Zac77; Lus+03; GN02;
AG05]. Table 7.1 shows the performance of di�erent SC algorithms on real-
world networks. Measuring the quality of an inferred partition ˆ̀ is in gen-
eral not straightforward since communities are not uniquely de�ned. We
propose two di�erent scores to accomplish this task. One is the modularity4

4 Note that the measure of the modularity is meaningful on assortative or disassortative net-
works but not on “hybrid” networks for which a more involved description would be needed.
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[NG04], QMod
A ( ˆ̀), de�ned in Equation (4.3), where we recall that high val-

ues of QMod
A correspond to good quality partitions. Alternatively, the par-

tition quality is evaluated in terms of (normalized) posterior negative log-
likelihood of the DCSBM, Qlikelihood

A :

Qlikelihood
A ( ˆ̀) = − 1

2|E |

 ∑
(ij)∈E

log

θ̂i θ̂j

Ĉˆ̀ i , ˆ̀ j

n

+ ∑
(ij)/∈E

log

1− θ̂i θ̂j

Ĉˆ̀ i , ˆ̀ j

n

 ,

where θ̂i = di/d̄ and Ĉab =
(

∑i : ˆ̀ i=a ∑j : ˆ̀ j=b Aij

)
/
(

∑i : ˆ̀ i=a ∑j : ˆ̀ j=b θiθj

)
.

Good quality clustering correspond, in this case, to low values Qlikelihood
A .

The results are compared for di�erent clustering algorithms on 15 real-
world networks of increasing size. For all networks, the number of com-
munities, when not available, is estimated with Algorithm 7.2 and then the
same value is used for all competing techniques (which in general do not
provide their own dedicated estimator of k). The underlined numbers in the
k column indicate instead that k is known. Furthermore, for all networks,
community detection is performed only on the largest connected compo-
nent of the graph and n, c, Φ, k refer to the characteristics of this dominant
connected component. Given the embedding X, 5 iterations of k-means are
run and the best partition ˆ̀ (in terms of k-means is kept) and the scores
QMod

A , Qlikelihood
A are computed. To keep the stochastic nature of k-means

into account, this step is repeated for 8 times and Table 7.1 reports the re-
sults ofQMod

A , Qlikelihood
A in terms of mean± standard deviation.

The �rst score column of Table 7.1 indicates the output of the meta-algorithm
Algorithm 5.1 for which ζp is estimated from λ

↓|·|
1 (B)/λ

↓|·|
p (B). The sec-

ond score column provides the output of Algorithm 7.1 in which the last
step of projection on the hypersphere is not performed. Comparing these
two columns, it is clear that Algorithm 7.1 generally provides much bet-
ter partitions both in terms of QMod

A and Qlikelihood
A , as a consequence of

λ
↓|·|
1 (B)/λ

↓|·|
p (B) being an inappropriate estimator for ζp in general. The

following columns display the results scores obtained by Algorithm 7.1 with
the projection step (highlighted in cyan), by clustering based on the leading
eigenvectors of A [LR+15], by the Bethe-Hessian as per [SKZ14], by the non-
backtracking matrix as per [Krz+13], by the random walk Laplacian as per
[SM00] and by the symmetric normalized Laplacian of [QR13].

The algorithm of [SM00] based on Lrw provides in certain cases very com-
petitive partitions (e.g., in the Wikipedia dataset) but is quite unreliable as it
may dramatically fail in others (GNutella P2P and Polblogs). Algorithm 7.1
without the normalization step provides systematically good partitions, all
comparable to those of Lsym

τ . This is an evidence that Algorithm 7.1 e�ec-
tively produces a node embedding which is signi�cantly resilient to degree
heterogeneity. Finally, the improved version of Algorithm 7.1 including the
projection step further improves the quality of the partition on most datasets,
providing on all datasets but Wikipedia the highest reported modularity and
lowest, or second lowest measured value of Qlikelihood

A .
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Figure 7.3: Comparison of the overlap (left) and modularity (right) resulting from
the label estimation of Algorithm 7.1 (blue diamonds) and Louvain al-
gorithm (orange crosses) applied on the giant component of G , as func-
tion of the detection hardness. For this simulation, n = 50 000, k = 2,
π ∝ 12, c = 8. Averages are taken over 10 samples.

To test Algorithm 7.1 we computed the vector ζ up to machine error preci-
sion, that is, the convergence stopping criterion in Algorithm 7.3 is met when
r’s update is below machine precision. Notably, due to the non-linearity of
the k-means step, larger errors in the estimate of the values of ζ lead, within
a certain range, to the same partition. The same classi�cation precision can
therefore be reached in fewer iterations, thus faster, if needed.

Let us mention that, comparing the columns “Alg 7.1wp" and “H√cΦ", it ap-
pears evident that Algorithm 7.1 indeed achieves good quality embeddings
on real-world graphs. In addition, it appeared from our simulations that the
projection step on the unitary hypersphere of the rows of X signi�cantly
helps (both in terms of quality of the partitioning and of the variance of the
score) the convergence of k-means at a low computational cost.

As a side comment, although formally not strictly comparable on even
grounds, we evaluated the performances reached by Algorithm 7.1 against
the popular greedy Louvain method [Blo+08] using its scikit-network imple-
mentation [Ped+11]. The Louvain method comes with an estimate of the
number of communities and relies on a di�erent notion of communities
than the one we used. Speci�cally, it is a hierarchical algorithm which looks
for a partition maximizing the modularity, while Algorithm 7.1 relies on
the DCSBM assumption. Figure 7.3 shows that Algorithm 7.1 largely outper-
forms the Louvain method on a DCSBM graphs, both in terms of overlap (left)
and modularity (right), except below αc. There, the Louvain method reaches
higher modularity, but this is likely an incidental artifact of the modularity
optimization constraint [GSPA04].

The situation of real networks is less straightforward. We indeed observed
that when the number of communities estimated by both algorithms is sim-
ilar, they both produce node partitions with a similar modularity. This is
however no longer the case when the estimated k are more distinct (e.g., on
GNutella P2P). While we recommend our estimation method of k due to its
interpretability (that we discussed all along the chapter), we acknowledge
that the Louvain algorithm often provides very competitive outcomes, at a
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smaller computational cost but at the expense of any theoretical guarantee.
Similar considerations can be made in relation to the more recently proposed
Leiden method [TWVE19].

7.3 conclusion
This chapter considered the problem of providing an e�cient and practical
implementation to our proposed Algorithm 5.1, itself inspired from Claim 5.1.
We kept the focus on two main problems: on the one hand de�ning fast
routines to accomplish the steps on Algorithm 5.1, on the other hand to
design an algorithm which does not heavily rely on the DCSBM assumption
and that can perform CD on arbitrary graphs.

In particular, one of the main contributions is the design of Algorithm 7.2,
needed to estimate k. We discussed at length in the previous chapters that
determining the number of communities on a graph in an unsupervised way
is, in general, a very challenging task. Algorithm 7.2 is directly inspired from
the results of [SKZ14], but what is truly novel is its e�cient implementation.

The result of our analysis leads to Algorithm 7.1 which has been tested
on several real-world graphs, con�rming that its ability to perform CD on
arbitrary graphs. Given the high clustering performance achieved by Algo-
rithm 7.1, as we can also claim that the intuitions encoded in Claim 5.1 for
the DCSBM are, to some extent, also veri�ed on arbitrary graphs.

The results reported in Table 7.1 and Figures 5.5, 5.6 put us in position
to take a step back and look at our results from a di�erent angle. We can
observe that, while the results of Algorithm 7.1 and [QR13] are always the
best, the other competing spectral algorithm lead to very good or very poor
partitions, according to the setting considered. In the next chapter we show
that a uni�ed framework can be devised to interpret the aforementioned
SC algorithms, correctly predicting when and why each algorithm fails or
succeeds at �nding a high quality node partition.
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Abstract

This chapter provides a critical analysis and interpretation of the competing spectral
clustering (SC) algorithms detailed in the former chapters. It will in particular be shown

that it is possible to predict and explain under a uni�ed framework when the aforemen-

tioned algorithms are expected to yield good or poor performances. These results further

promote Algorithm 7.1 as a powerful candidate for spectral clustering (SC) over the

competing methods.

8.1 Adjacency-based algorithms . . . . . . . . . . . . . . . . . . 128
8.2 Laplacian-based algorithms . . . . . . . . . . . . . . . . . . . 131
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

This chapter serves as a conclusion to Part II which studied SC for com-

munity detection (CD), proposing a novel algorithm. The two main contribu-
tions considered so far concern a theoretical analysis of Algorithm 5.1 on
degree corrected stochastic block model (DCSBM)-generated graphs and a care-
ful implementation capable of performing CD on arbitrary graphs that do
not verify the DCSBM assumption, leading to Algorithm 7.1. We here close
our analysis of SC for CD with a high level look over the problem, based on
the results obtained and detailed in the previous chapters.

The remainder of the chapter is structured as follows. First we consider
the algorithms of [LR+15; Jin+15; New06]which are based on the use of the
eigenvectors of the adjacency (or of the closely related modularity) matrix.
Similarly to the Bethe-Hessian matrix, we argue that a mapping with sta-
tistical physics is capable to motivate also these algorithms and naturally
justi�es the superiority of Bethe-Hessian-based approach.

Laplacian-based algorithms are then considered, explaining how Algo-
rithm 7.1 provides an “optimum” between the classical Laplacian matrices
[Fie73; SM00; NJW01b] and the regularized ones [SKZ14; QR13].
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These results allow us to claim that Algorithm 7.1 solves the crucial prob-
lem of the ambiguous de�nition of sparsity, being adapted to operate in both
the dense and the sparse regimes.

8.1 adjacency-based algorithms
In this section we relate Algorithm 7.1 with the SC algorithms of [LR+15;
Jin+15] that, referring to Algorithm 4.1, impose the choice M = A and
[New06], which instead uses a rank one perturbation of the adjacency ma-
trix, M = A− ddT

2|E | , showing that these algorithms unfold naturally follow-
ing the procedure used to derive the Bethe-Hessian matrix, but for a di�erent
variational approximation.

Recall from Chapter 2 that the Bethe approximation for the Ising model
is a variational approximation that is particularly suited when dealing with
sparse graphs. A simpler, alternative variational method is represented by
the naïve mean �eld (NMF) approximation, also known in the inference liter-
ature as naïve Bayes [Ris+01].

Let us consider an Ising-like Hamiltonian without external �elds (Equa-
tion (2.2)) de�ned on the graph G(V , E):

The Ising

Hamiltonian

H(s) = − ∑
(ij)∈E

Jijsisj.

We recall from Chapter 2 that the two fundamental steps of variational ap-
proximation are: (i) de�ning a parametric free energy

The variational

free energy

F̃β(q) = ∑
s

pq(s)(βH(s) + log pq(s)),

where pq(s) is a probability distribution whose expression de�nes the varia-
tional approximation and (ii) �nd the set of parameters q minimizing F̃β(q).

In the Bethe approximation, pq(s) is the expression of the Boltzmann dis-
tribution (2.1) on trees, making it adapted to sparse graphs. The NMF approx-
imation is instead obtained assuming all spins to be independent, i.e.

The NMF

approximation

pMF
m̂ (s) = ∏

i∈V

1 + m̂isi

2
. (8.1)

The distribution pMF
m̂ simply factorizes over all nodes and m̂i is the expecta-

tion of si according to Equation (8.1). We then can write the corresponding
variational free energy as follows:

F̃MF
β (m̂) = − ∑

(ij)∈E
βJijm̂im̂j + ∑

i∈V
∑
si

1 + m̂isi

2
log

(
1 + m̂isi

2

)
.
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Figure 8.1: Overlap comparison as a function of the hardness of the detection of
DCSBM-generated graphs with n = 10 000, c = 200, k = 2, θi ∼
[U (3, 10)]4. Yellow stars correspond to SC as per [LR+15], red squares
as per [Jin+15], green triangles as per [New06] and the blue diamonds
are the result of Algorithm 7.1. Left: dense regime, c = 200. Right:
sparse regime, c = 8. Averages are taken over 10 samples.

Following the same procedure as in Chapter 2 to obtain the Bethe-Hessian
matrix, we now derive the Hessian matrix of F̃MF

β (m̂) at the paramagnetic

point m̂ = 0n, which we denote with HMF
β .

(
HMF

β

)
ij
=

∂2F̃MF
β (m̂)

∂im̂i∂m̂j

∣∣∣∣∣
m̂=0n

= (In − βJ)ij .

Also in this case, the smallest eigenvalues of HMF
β and their corresponding

The NMF Hessian

at the paramagnetic

point

eigenvectors bring information on the local minima of the free energy and,
in the context of CD, can be exploited to determine the community structure
of G(V , E). The smallest eigenvalues of HMF

β are however trivially related
to the largest eigenvalues of J and the two matrices share the same eigenvec-
tors. Unlike the Bethe-Hessian matrix, however, in this case the temperature
β plays no role in determining the eigenvectors of HMF

β and, consequently,
it is pointless to tune it to an optimal value.

The relation with SC comes naturally into play when imposing J = A that
corresponds precisely to the choice made to derive the Bethe-Hessian matrix
Hr. This choice naturally leads to a NMF version of SC based on the eigenvec-
tors of HMF

β associated to its smallest eigenvalues, the smallest of which
corresponds to the ferromagnetic con�guration (it is the Perron-Frobenius
eigenvalue of A), while the subsequent eigenvectors are correlated with
the community structure. From these elements, the relation with [LR+15;
Jin+15] unfolds naturally.

If instead one chooses J = A − ddT

2|E | , the NMF approximation leads to
the algorithm of [New06] (at least in the case of k = 2 communities) in
which the ferromagnetic con�guration is energetically penalized and cluster-
ing should be performed on the eigenvector associated to the smallest (resp.
largest) eigenvalue of MMF

β (resp. A− ddT

2|E | ). It has to be noted however that
(i) unlike the adjacency matrix, the modularity matrix is dense, hence the
eigenvectors are computed in a less e�cient way; (ii) on su�ciently dense
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graphs, the Perron-Frobenius eigenvector of A is strongly aligned with the
degree vector.1 Given that A is Hermitian, all its eigenvectors (expect theScatter plot of the

leading eigenvector

of A (x1) vs d for a

dense DCSBM graph

x1

d

leading one) are essentially orthogonal to d and are, therefore, a close ap-
proximation of the eigenvectors of A− ddT

2|E | , as well. For these reasons the
algorithm of [New06] and of [LR+15] are expected to have a very similar per-
formance (as con�rmed by Figure 8.1), with the �rst being computationally
faster. The SCORE algorithm of [Jin+15] is then an e�cient improvement of
[LR+15] which allows one to keep he degree heterogeneity into account. The
performances of [New06; LR+15; LR+15] are compared with the output of
Algorithm 7.1 in Figure 8.1 for k = 2 class DCSBM graphs with high average
degree on the left and with low average degree on the right.

With these results at hand, we can a�rm that the algorithms of [New06;
LR+15; Jin+15] can be directly compared with Algorithm 7.1 since they can
be obtained following the same procedure, yet for a di�erent variational ap-
proximation. The �nal step is to claim that the Bethe approximation is over-
all more accurate2 than NMF [MWJ13] on random graphs. Intuitively, this
can be understood saying that NMF can be seen as a �rst order approxima-
tion (only the �rst moment of s is kept into account), while the Bethe ap-
proximation is a second order approximation (that considers also the spins
correlations).

More speci�cally, the NMF is appropriate for dense graphs [OS01], being in
fact asymptotically exact on the fully connectedCurie-Weiss model [KPW13]
in which J = J1n1T

n . It performs instead poorly on graphs with a low averageThe NMF

approximation is

appropriate on dense

but not on sparse

graphs

degree, as a consequence of the spectral behavior of A in the sparse regime.
On the opposite, the Bethe approximation (hence Hr) is adapted to deal with
sparse graphs. One may wonder, however, if it is still a good option to study
dense graphs. It can be shown [OS01] that in the dense regime, the Bethe
free energy can be approximated with the so-called TAP free energy [TAP77]
which di�ers from the NMF free energy due to existence of a correction, called
Onsager reaction term [Ons36].

The appropriateness of the Bethe approximation on dense random graphs
can further be understood from a random matrix theory (RMT) perspective.
We showed in fact in Section 3.2.2 that there exists a trivial relation between
the spectral properties of the non-backtracking and adjacency matrices on
dense SBM-generated graphs and further observed empirically that this rela-
tion holds also in the DCSBM case.

For this reason, we claim that SC based on the Bethe-Hessian matrix Hr

is expected3 to provide better performances than SC based of the adjacency

1 This is formally proved for the DCSBM in [Jin+15], but intuitively it holds in general as a
consequence of d

2 Recall that the fundamental task of a variational approach is to approximate the free energy
(De�nition 2.1). This problem is well de�ned, independently of CD and for any graph.

3 The claim of a class of SC algorithms being uniformly superior to another one is, certainly,
very hard to motivate, also recalling the di�culty to assess the performance of CD on practical
tasks. The word “expected” plays here the fundamental role to underline that the assertion
has not to be considered as a strict rule (counterexamples in which SC based on A performs
better than Hr may be potentially found) but rather as a general trend.
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matrix A. Moreover, unlike A, the matrix Hr seems to be a suitable candidate
to perform SC for any average degree, solving the crucial problem introduced
by the ambiguity of the de�nition of sparsity. For this reason, Hr allows one
to bridge the dense and sparse regimes.

8.2 laplacian-based algorithms
This section draws some connections between the Laplacian-based algorithms
of [Fie73; SM00; NJW01b; QR13], including also the Bethe-Hessian of [SKZ14].
We here refer to SC based on Lsym/rw and Lsym/rw

τ under the same terms
since from a spectral viewpoint, these pairs of matrices are closely related.
Referring to the “classical” normalized Laplacian matrices, the only di�er-
ence between [SM00] and [NJW01b] resides in step 4 of Algorithm 4.1. Sim-
ilar comments can be made also for [QR13].

Let us �rst consider the graph Laplacian matrix L = D − A of [Fie73].
The Bethe-Hessian matrix can be considered as a regularized version of L.
The central result of Claim 5.1 revolves around the exploitation of a series of
Bethe-Hessian matrices {Hζp}p=1,...,k whose expression is reported in Equa-
tion (8.2) for convenience

Hr = (r2 − 1)In + D− rA. (8.2)

For the DCSBM we claimed that, under proper hypotheses, the optimal reg-
ularization to extract information from the p-th eigenvector of Hr is r =

ζp =
λ↓1(CΠ)

λ↓p(CΠ)
+ on(1), where we recall that (CΠ)ab is the average number

of neighbours in class b of a node in class a. For easy detection problems,
the o�-diagonal terms of CΠ simply go to zero and, due to Assumption 5.1
according to which CΠ1k = c1k, the eigenvalues of CΠ become degener-
ate, hence, for all 1 ≤ p ≤ k, ζp → 1 and Hζp → D − A. For this rea-
son, we can interpret the combinatorial graph Laplacian matrix as the trivial
clustering limit of the optimal Bethe-Hessian matrix. We further recall from
Remark 4.3 that the multiplicity of the zero eigenvalue of L = Hr=1 equals
the number of connected components of a given graph. Identifying commu-
nities with the connected components corresponds to the extreme case in The combinatorial

graph Laplacian

matrix is the trivial

clustering limit of the

optimal

Bethe-Hessian

which the number of connections between nodes in the same community is
larger than the connections across communities (which is equal to zero) and
is the simplest setting in which CD can be performed. From the de�nition
of ζ

(j)
p in Equation (5.2), the choice r = 1 unfolds naturally to detect the

connected components of a graph.
From a statistical physics viewpoint, the choice r = 1 (irrespective of the

actual value of ζp) corresponds to the zero temperature limit
4 in which the

free energy F = βU − S → βU neglects the contribution of the entropy.
For this reason, when ζp is far from 1, imposing r = 1 (i.e. , using the graph

4 Recall that β is the inverse temperature and that βJ = ath(r−1).
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Figure 8.2: Overlap comparison as a function of the hardness of the detection of
DCSBM-generated graphs with n = 10 000, c = 200, k = 2, θi ∼
[U (3, 10)]4. Green dots correspond to SC as per [Fie73], light-blue dia-
monds as per [SM00] and red dots as per [Jin+15]. Averages are taken
over 10 samples.

Laplacian matrix) is equivalent to assuming a negligible contribution from
the noise in G(V , E) and hence leads to over-�tting. In fact, the typical prob-
lem of SC based on L is that single nodes are isolated into one community,
due to the existence of uninformative local minima in the energy spectrum.

Similar remarks can be made concerning the setting of disassortative com-
munities. As it was commented in Section 5.4, in this case ζp < 0 and the
trivial limit corresponds to ζp = −1 for which Hζp = D + A, also knownDisassortative and

bipartite graphs as signless Laplacian [CRS07]. It is known that this matrix is a useful tool to
study bipartite graphs that correspond the “extreme disassortative setting”
in which connections exist only between nodes in di�erent classes.

If on the one hand D− A corresponds to the trivial clustering limit, the
Bethe-Hessian H√cΦ of [SKZ14] is the opposite regime, considering a worst-
case scenario. In fact, the condition ζp =

√
cΦ corresponds (for k classes

of equal size) to the detectability threshold, below which it is conjectured to
be impossible to recover communities with an e�cient algorithm [Dec+11].
The choice r =

√
cΦ allowed the authors of [SKZ14] to design an algorithmThe existing sparse

SC algorithms are a

“worst case” limit of

the optimal

Bethe-Hessian

capable of making non-trivial clustering as soon as theoretically possible
but that is generally suboptimal, as extensively commented in the previous
chapters. Figure 5.6 clearly summarizes the behavior of the regularizer r:
small values of r lead to better partitions, provided that they guarantee the
existence of isolated informative eigenvalues in the spectrum of Hr.

Let us now brie�y consider instead the regularized Laplacian matrix

Lsym
τ = D−1/2

τ AD−1/2
τ ,

where Dτ = D + τ In. In Chapter 6 we showed that the optimal regulariza-
tion consists in the choice τ = ζ2

p − 1. In the trivial regime, this leads to
τ → 0, for which Lsym

τ → Lsym (a similar relation holds of course for Lrw
τ

and Lrw). Very similar comments to the ones made for D− A can be done
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also for the normalized Laplacian matrices that, indeed, are obtained, like
L, from the relaxation of an optimization problem. Similarly to [SKZ14], the
regularized Laplacian of [QR13] considers instead an “almost” worst case sce-
nario. In order to guarantee detectability down to the threshold with Lsym

τ as
in [SKZ14], one must pick τ = cΦ− 1, while [QR13] proposes heuristically
τ = c which is close to the parametrization which guarantees a non-trivial
result also in the hardest regime.

With these observations being laid out, we conclude this section with two
fundamental take-home messages. The Laplacian matrices (with the excep-
tion of the Bethe-Hessian of [SKZ14]) have been typically studied on dense Take home messages

graphs because the mathematical tools to address this regime are generally
more powerful and better known than those in the sparse regime. Unlike
the matrix A that is derived from a variational approximation that is un-
suited for the sparse regime, however, the poor performances of the Lapla-
cian matrices are rather a consequence of an overly optimistic choice of the
parametrization (r or τ) which corresponds to assuming the clustering prob-
lem to have a trivial solution. To con�rm this claim, Figure 8.2 compares
the overlaps a function of α = (c− cout)/

√
c, obtained by the algorithms

of [Fie73; SM00; LR+15] for dense DCSBM graphs with k = 2 communities
of equal size. This plot evidences that the algorithmic threshold of [LR+15]
(based of A) achieves smaller values of α than the one of [Fie73; SM00].

Concluding, while Section 8.1 argues that Hr is a good candidate to bridge
the dense and the sparse regimes, Section 8.2 exhibits that Algorithm 7.1
�nds the optimal between the trivial clustering regime (assumed de facto by
[Fie73; SM00; NJW01b]) and the hard one considered in [SKZ14; QR13].

8.3 conclusion
In this chapter we provided a critical overview of the main methods for SC
for CD taken under consideration in this manuscript and showed how they
can all be understood in a simple uni�ed framework that fosters the adop-
tion of Algorithm 7.1 for CD. The aforementioned methods were mostly de-
veloped in parallel by di�erent communities and motivated with di�erent
lines of arguments. The existence of a uni�ed view (yet, we acknowledge,
somewhat biased by the statistical physics perspective) is an important con-
tribution to relate and interpret the existing results. Notably, we discovered
that the hyper-parameters involved in these algorithms must be smartly se-
lected, this selection being a function of the di�culty of the clustering prob-
lem: �nding these hyper-parameters is key to the clustering performance.

The necessity to adapt the choice of the graph representation matrix to
the hardness of the problem at hand is a profound observation, likely not re-
stricted to CD. In light of this observation, it may appear that some common
optimization problems, beyond clustering, have similarly been devised in the
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past to perform well in easy scenarios, but would require a task-hardness re-
lated update to perform better in harder settings.

In the next chapters, we provide practical examples of how the results of
Part II can be generalized to more involved scenarios. In particular, in Chap-
ter 9 we consider the problem of dynamical CD that realistically keeps into
account for the fact that real-world systems modelled by networks typically
evolve with time. Moreover, Chapter 10 treats our extension to the case of
weighted graphs, with the speci�c application to the sparsi�cation of kernel
matrices used to obtain cost e�cient data clustering spectral algorithms.



G E N E R A L I Z AT I O N S
This part of the manuscript presents the extensions of our works
on spectral clustering for community detection, presented in
Part II. First, in Chapter 9 we consider the setting of dynamical
community detection on graphs generated from the dynamical

degree corrected stochastic block model, proposing a novel spec-
tral algorithm. Then, in Chapter 10 we treat the problem of i.i.d.
sparsi�cation of kernel matrices for spectral clustering.





9
SPECTRAL CLUSTER ING

IN DYNAMICAL GRAPHS

Abstract

This chapter extends the results of Part II considering the problem of community de-
tection (CD) in dynamical graphs in which the community structure evolves over time.

The dynamical setting is of utmost importance in modern network science, since most

systems modelled by graphs indeed have a non-trivial dependence on time. Keeping

the graph dynamical component into account allows us to e�ciently exploit informa-

tion coming from di�erent times, consequently improving the clustering quality. As a

main result, we develop a novel spectral algorithm for dynamic CD, studied on graphs

generated from the dynamical degree corrected stochastic block model (DDCSBM).

9.1 Community detection in dynamical graphs . . . . . . . . . . 138
9.1.1 The dynamical degree corrected stochastic block model140
9.1.2 Related works and contributions . . . . . . . . . . . 142

9.2 Detectability threshold for �nite T . . . . . . . . . . . . . . . 144
9.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.1 The dynamical Bethe-Hessian matrix . . . . . . . . . 146
9.3.2 Community detectability with the dynamic Bethe-

Hessian . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.4 Algorithm and performance comparison . . . . . . . . . . . 154

9.4.1 Algorithm implementation . . . . . . . . . . . . . . . 154
9.4.2 Performance comparison on synthetic datasets . . . 156
9.4.3 Test on Sociopatterns Primary school . . . . . . . . . 157

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

In Part II the problem of community detection (CD) with spectral cluster-

ing (SC) techniques has been deeply investigated on static graphs. The word
“static” here simply refers to the absence of the notion of time. Taking a step
back and referring to Chapter 1, we must recall that graphs have a scienti�c
interest for their ability to represent and model real world systems of inter-
acting agents that are rarely static. As a consequence, graph representations

137
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are typically snapshots or averages of the system’s interactions occurred in
a given time interval.

To give a practical example, consider the karate network [Zac77] repre-
senting the friendships between 34 members of a karate club. The most sig-
ni�cant interactions have been established studying the club members re-
lationships in the a period ranging from 1970 to 1972: the resulting graph
representation encodes therefore an average of the members’ interactions
over the considered time window.

Like in the case of the karate network, most systems that can be modelled
with graphs have an intimate dynamical component and a richer description
can be provided with the use of dynamical graphs [HS12]. Examples of these
instances include social groups in which interactions are determined by hu-

man proximity [Cat+10; EP06] or face-to-face interactions [Bar+13; BC13],
biological cells in which edges model gene or protein interactions [PSS10;
Leb+10] and transportation networks [PS11; Bor+13; Ban+15], representing
how di�erent locations are connected among themselves.

The inclusion of an additional degree of freedom representing time makes
it particularly challenging to agree on the most basic concepts concerning
temporal graphs and no general consensus exists on several de�nitions and
nomenclature [Hol15]. In the remainder we consider the following de�nitionA snapshot temporal

graph (picture taken

from [Muc+10])

of temporal graph, sometimes referred to as snapshot graph [RC18].

De�nition 9.1 (Snapshot graph). A snapshot graph is a temporal graph rep-

resentation, composed by an ordered sequence of T ∈ N graph snapshots

{G1(V1, E1), . . . ,GT(VT, ET)} in which (ij) ∈ Et indicates that nodes i and
j are connected at time t. To a temporal graph is associated a sequence of adja-

cency matrices {A(1), . . . A(T)}.

A snapshot graph is, by all means, amultiplexed graph (introduced in Chap-
ter 1) in which each level corresponds to a snapshot. Note that in De�ni-
tion 9.1 time is discrete and for each t, Gt(Vt, Et) is a static graph.

With the basic notions concerning dynamical graphs being laid out, we
take into account how the problem of CD can be formulated in its dynamical
version, allowing us to extend our results from Part II to this setting.

9.1 community detection in dy-
namical graphs

The problem of dynamical community detection (DCD) can be informally de-
�ned as the task of performing CD on a dynamical graph, assigning a class
label to each node as a function of time. The underlying assumption moti-
vating DCD is that, as the graph evolves, also the communities change their
structure. As a practical example one can think of a citation network in which,
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Figure 9.1: Alluvial diagram mapping change in scienti�c research in the years from
2001 to 2007. Each block corresponds to a �eld and its height is propor-
tional to the number of citations occurred in that �eld.
Source: doi.org/10.1371/journal.pone.0008694.g003.

for instance, an edge1 (ij) ∈ Et means that author i cited author j in year
t. The community structure in this graph is determined by the authors’ re-
search interests which may change over time, thus altering the community
structure. A practical representation of this process is shown in Figure 9.1
(taken from [RB10]) in which changes in the community structure are evi-
denced with the help of an alluvial diagram.

As a consequence of the communities being expected to evolve smoothly
across time [RC18; CR19], high correlations are observed in the community
labels at di�erent times. A major advantage of DCD with respect to CD is the
possibility to exploit such correlations, hence using information that may
come from past (or future) realizations of the graph to determine the class
structure at a given time.

In order to formally address DCD, it is necessary to clearly frame the prob-
lem from a mathematical perspective. In Part II we insisted on how provid-
ing a de�nition to CD is a generally hard task and, in the dynamical case,
the problem of de�ning communities is even more exacerbated by the com-
plexity that rules the dynamical evolution of the graph. As a consequence,
even the most expert authors in the �eld [HS12; RC18; CR19] have struggled
to provide a uni�ed view on the problem of DCD that, in general, may have
very di�erent de�nitions, strategies as well as objectives. For this reason,
we do not attempt in this chapter to provide a (even incomplete) review of
DCD: given the diversity of the di�erent approaches, in many cases, results
cannot be compared on even grounds. On the opposite, in the remainder we
will speci�cally consider the problem of label inference from the dynamical

degree corrected stochastic block model (DDCSBM) [Xu15] which is a gener-
alization of the degree corrected stochastic block model (DCSBM) studied in
Part II. Like in the static case, this model has the important advantage to
provide a great mathematical control, motivating the reason of our choice.

1 For the sake of precision, we should denote (ij) ∈ Ed,t since the natural representation of
this system is obtained with a directed network.

https://doi.org/10.1371/journal.pone.0008694.g003
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Figure 9.2: Alluvial diagram representing the dynamics of label vector obtained ac-
cording to De�nition 9.2. In this example k = 4, T = 4. The rows (and
the colour code) corresponds to the four classes, while the columns to
the time snapshots.

9.1.1 the dynamical degree corrected
stochastic block model

In this section we introduce the DDCSBM together with its conjectured de-
tectability threshold. First of all, let us settle some notation. We denote with
T ∈ N the number of snapshots and we let {Gt(Vt, Et)}t=1,...,T be a se-
quence of unweighted and undirected graphs, each with n nodes. At time
step t, Et and Vt denote the set of edges and nodes, respectively, which form
Gt(Vt, Et), with Vt ∩ Vt′ = ∅, for t′ 6= t: each node has T copies, each copy
being a di�erent object. We denote with it, for 1 ≤ i ≤ n and 1 ≤ t ≤ T,
a node in Vt. We call A(t) ∈ {0, 1}n×n the symmetric adjacency matrix of
Gt(Vt, Et) and D(t) its associated degree matrix. We now detail the genera-
tive model for {Gt(Vt, Et)}t=1,...,T .

First of all the label dynamics must be speci�ed. Let `it ∈ {1, . . . , k} be the
label of node it, i.e. the label of node i at time t and let π ∈ Rk be the (time
independent) vector encoding the expected fraction of nodes belonging to
each class. The labels are updated across time as per De�nition 9.2.

De�nition 9.2 (Label dynamics). Given three positive integers k, n, T and a

vector π ∈ Rk
satisfying 1T

k π = 1, the vector ` ∈ {1, . . . , k}nT
is de�ned

as follows. First, the entries {`it=1}i=1,...,n are initialized by assigning random

values with probability proportional to the class sizes: P(`i1 = a) = πa. The

remaining entries labels are then obtained for 2 ≤ t ≤ T according to

The label dynamics

is a Markov process

`it =

`it−1 w.p. η

a w.p. (1− η)πa, a ∈ {1, . . . , k},
(9.1)

i.e., the label of node it is maintained with probability η and otherwise reas-

signed at random with probability 1− η.
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Note that, according to De�nition 9.2, a proportion of the reassigned nodes
from time t will be a�ected the same labels at time t + 1. It is easy to verify
from De�nition 9.2 that the expected sizes of the clusters are constant across
time, in fact:

E [|Vt,a|]
n

=
1
n

E

[
η|Vt−1,a|+

k

∑
b=1
|Vt−1,b|(1− η)πa

]

= η
E [|Vt−1,a|]

n
+ (1− η)πa. (9.2)

where Vt,a is the set of nodes in Vt with label a. At time t = 1, by hypothesis,
E[|V1,a|] = nπa. Plugging this relation in Equation (9.2), one obtains with
a recursive argument that for all t, E[|Vt,a|] = nπa. Figure 9.2 shows the
alluvial graphs of a typical realization of ` for k, T = 4. Given the generative
model of the label vector, we now provide the de�nition of the DDCSBM.

De�nition 9.3 (Dynamical degree corrected stochastic block model). Let

T ∈ N be the number of instances of snapshots graph with n nodes. Denote

with ` ∈ {1, . . . , k}nT
the class label vector, generated according to De�ni-

tion 9.2, where k is the number of classes. Further let C ∈ Rk×k
be a sym-

metric matrix with positive elements. and θ ∈ Θ = [θmin, θmax] be a ran- The dynamical

degree corrected

stochastic block

model

dom variable that encodes the intrinsic node connectivity, distributed accord-

ing to ν, satisfying
∫

Θ dν(θ) = 1 (normalization), E[θ] =
∫

Θ θ dν(θ) = 1,
E[θ2] =

∫
Θ θ2 dν(θ) ≡ Φ = On(1). For each node, θi is drawn indepen-

dently at random from the distribution ν.

The entries of the (symmetric) adjacency matrix A(t)
of Gt(Vt, Et) are set to

one independently and independently across time, with probability:

P(A(t)
ij = 1) = min

(
θiθj

C`it ,`jt

n
, 1

)
and are equal to zero otherwise.

In words, given the label vector `, the DDCSBM generates the elements
of {Gt(Vt, Et)}t=1,...,T independently at random from the static DCSBM with
the class labels that change across time. This model makes strong assump-
tions on the dynamics, keeping �xed the matrix C, the number and size of
the communities, as well as the parameter η, but it is however capable to
generate a snapshot graph with labels correlated across time.

Before proceeding any further, let us make a remark of the independence
assumption of each graph across time.

Remark 9.1 (Graph independence across time). In the DDCSBM the instances

Gt(Vt, Et) are generated independently across time. Let us translate this as-

sumption in simpler terms. In a practical setting, we can de�ne a time scale,

say τ, which determines the speed at which the graph evolves. Assuming that

the snapshots of the graph are independent means to assume that τ � 1, i.e.
that the typical time needed for the graph edges to rearrange is much smaller

than the distance between two successive snapshots. This assumption is hence

adequate when the snapshots are su�ciently far in time.
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Related to Remark 9.1, it has to be noted that a second time-scale can
be de�ned, describing the speed at which the community structure evolves.
This time scale depends on η and goes to in�nity for η = 1 (the community
labels are frozen) and to zero for η → 0 (the communities are completely re-
con�gured between one snapshot and the successive one). The fundamental
hypothesis introduced by the DDCSBM consists in assuming that the graph
evolves at a much faster rate than the communities, so that, while τ → 0
(due to the independence assumption), η = O(1).

Our objective is to infer the vector ` ∈ {1, . . . , k}nT , hence to assign to
each node at each time the appropriate community label. Like in the static
case, also for DDCSBM there exists a detectability threshold below which
inference is not asymptotically feasible. In particular, in [Gha+16] the au-
thors retraced the steps made by [Dec+11] in the static regime, deriving the
(asymptotically exact) belief propagation (BP) equations to perform inference
in the dynamical stochastic block model (DSBM) (in which θ = 1n) to then de-
termine the instability condition of BP. In the setting of k classes of equal size
with C = cout1k1T

k + (cin− cout)Ik, c = 1
k C1k and de�ning α as in the static

case, i.e. α = (c− cout)/
√

c, the authors of [Gha+16] conjectured that, for
T → ∞, DCD is feasible if α > αc(∞, η), where αc(∞, η) is the unique value
of ᾱ > 0 for which the largest eigenvalue of

M∞(ᾱ, η) =

(
ᾱ2 2η2

ᾱ2 η2

)
(9.3)

is equal to one. In [Gha+16] the authors further gave clues to generalize
their result for T �nite but did not provide an explicit expression to αc(T, η).
In Section 9.2 we extend the conjecture of [Gha+16], providing the explicit
expression to αc(T, η) and generalizing it to the DDCSBM setting.

With this fundamental property of the DDCSBM being settled, let us now
present the main contributions and challenges considered in this chapter.

9.1.2 related works and contributions
Our main contribution consists in the design of a new, e�cient algorithm
to perform SC in dynamical graphs generated from the DDCSBM. Albeit SC in
dynamical graphs is much less studied than it is on static graphs, recently
it has gained more and more interest from the scienti�c community and SC
algorithms have also been designed to operate in the dynamic regime. The
main goal of DCD is to exploit the correlation of the labels across time in
order to improve the clustering performance.

One of the most common approaches is given by evolutionary spectral clus-

tering [Chi+07; Qin+16; Chi+09; Liu+18; XKHI14] in which the community
assignment is de�ned for all t, optimizing Qev

t , de�ned for all t ≥ 2 as:

Qev
t (`(t), `(t−1)) = hQ

snap
t (`(t)) + (1− h)Qsmooth

t,t−1 (`(t), `(t−1)), (9.4)
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where h is a parameter between 0 and 1, Qsnap
t and Qsmooth

t,t−1 are two quality
functions evaluating the goodness of a partition on a single snapshot and
imposing a smooth change between `(t) = {`it}i=1,...,n and `(t−1), respec-
tively. More practically, Qsnap

t can be, for instance, the modularity, the RCut,
or some other cost function introduced in Section 4.1; an example of Qsmooth

t,t−1 ,
instead, is the overlap which corresponds to large values if `(t) and `(t−1)
are similar, while it tends to zero if the community labels are completely re-
arranged. Tuning the value of h, one can enforce higher (or smaller) levels
of smoothness in the label evolution.

Spectral clustering allows one to obtain a relaxed solution of the opti-
mization of Equation (9.4). Beyond all the weaknesses of the optimization
approach that we extensively discussed in Part II, it has to be noted that:
(i) the function Qev

t does not contain any information from all t′ > t (it
only depends on t and t− 1); (ii) the resulting relaxation does not, in gen-
eral, allow one to achieve the detectability threshold and are not adapted
for sparse graphs; (iii) smoothness is often included in a very heuristic way,
consequently leading to suboptimal algorithms.

A di�erent, but somewhat related approach consists in performing SC us-
ing as an input a modi�ed adjacency matrix obtained by averaging the last
realizations of the adjacency matrix, with possibly a forgetting factor giving
less weight to older times [PZ+19]. For instance, we can write

Ã(t) = (1− h)Ã(t−1) + hA(t).

Also in this case, clustering at time t does not exploit information from
instances appearing after t. This method has however been studied in the
sparse regime c = On(1) by [KV20] in which the authors showed that for Averaging the

adjacency matrix

simply corresponds to

the choice h = 1 in

Ã(t) = (1− h)Ã(t−1)+ hA(t)

η → 0 (the classes are supposed to be essentially frozen) and T su�ciently
large, one obtains good clustering performances in the sparse regime, simply
running Algorithm 4.1 on the matrix M = 1

T ∑T
t=1 A(t). While this result

is powerful, because it formally addresses the sparse regime, it essentially
treats DCD as a perturbation to static CD and does not cover the more inter-
esting regime in which communities can evolve rapidly with time.

To the best of our knowledge, the work of [Gha+16] provides the only
existing spectral algorithm properly treating both sparsity and small label
persistence. In the spirit of [Krz+13], the proposed method arises from a
linearization of the BP, which is capable of obtaining non-trivial partitions
as soon as theoretically possible. However, their resulting dynamical non-
backtracking matrix depends on an a priori unknown parameter,2 so the
algorithm is practically inapplicable.

As an answer to these limitations, we propose a new spectral algorithm
adapted to the sparse regime, which is able to detect communities even under
little (or no) persistence in the community labels and which bene�ts from

2 In order to design their dynamical non-backtracking matrix, the average number of connec-
tions among nodes in the same and across communities must be known.
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persistence to improve classi�cation performance over a static algorithm run
independently at each time-step. Speci�cally,

• We introduce a dynamical Bethe-Hessian matrix which, for k = 2
classes of equal size, retrieves non-trivial communities as soon as the-
oretically possible for any T, η. As a by-product, we o�er new results
on the spectrum of the dynamical non-backtracking of [Gha+16].

• We provide an algorithm applicable to any graph with k ≥ 2 com-
munities of arbitrary sizes.3 The resulting Algorithm 9.1 is part of the
CoDeBetHe.jl package.

9.2 detectability threshold for
finite T

In this section we formulate our generalization for �nite T of the claim of
[Gha+16] concerning the detectability threshold in the DSBM, further consid-
ering its extension to the DDCSBM setting. For convenience, we assume in
the remainder the case of k = 2 classes of equal sizes, leaving to Section 9.4
the discussion of how our results can be straightforwardly generalized to
the k > 2 setting.

In [Gha+16] the authors introduce a threshold αc(T, η), however not ex-
plicitly de�ne,4 below which (α < αc(T, η)) community detection is not
feasible. We go here beyond [Gha+16] by providing an explicit value for
αc(T, η) for all �nite T as in the following claim, whose details are treated
in Appendix C.1

Claim 9.1 (Detectability threshold in the DDCSBM). Let {Gt(Vt, Et)}t=1,...,T

be a sequence of graphs generated from a DDCSBM with k = 2 classes of equal

size as per De�nition 9.3 with Cab = cin if a = b and cout otherwise. Let

α = (c− cout)
√

Φ/c, then the labels of the DDCSBM can be inferred with an

e�cient algorithm only if α > αc(T, η), where αc(T, η) is the only positive ᾱ

for which the largest eigenvalue of MT(ᾱ, η) is equal to one, where

MT(ᾱ, η) =



Md M+ 0 . . . 0

M− Md
.
.
. . . . 0

0 M−
.
.
. M+ 0

.

.

.

.

.

.

.
.
. Md M+

0 0 . . . M− Md


, with



Md =

(
0 0 0
η2 ᾱ2 η2

0 0 0

)
,

M+ =

(
0 0 0
0 0 0
0 ᾱ2 η2

)
,

M− =

(
η2 ᾱ2 0
0 0 0
0 0 0

)
.

3 The algorithm a priori requires that η be known; otherwise, η can be estimated through
cross-validation.

4 Precisely, quoting the authors, this is as far as αc(T, η) is de�ned: “We can compute the
corresponding �nite-time threshold for a �xed T by diagonalizing a (3T − 2)-dimensional
matrix, where we have a branching process with states corresponding to moving along spa-
tial, forward-temporal, or backward-temporal edges at each time step”.

https://github.com/lorenzodallamico/CoDeBetHe.jl
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Figure 9.3: Position of αc(T, η) as a function of η (x axis) and T (color code). The
black and red solid lines correspond to the analytical values of αc(T, η),
for T = 1 and T = ∞, respectively. The dashed dotted lines are the
position of αc(T, η) computed numerically, and the thick solid pale lines
are the analytical values of αc(T, η) for T ∈ {2, 3, 4}.

The expression of αc(T, η) can be computed analytically for T = 2, 3, 4 and

T → ∞:

αc(T = 2, η) =
(
1 + η2)− 1

2

αc(T = 3, η) =
√

2
(

2 + η4 + η2
√

8 + η4

)− 1
2

αc(T = 4, η) =
√

2
(

2 + η2 + η6 + η
√

η8 + 2η4 + 8η2 + 5
)− 1

2

αc(∞, η) =

(
1 + η2

1− η2

)− 1
2

.

For other values of T, αc(T, η) is best evaluated numerically.

The value of αc(T, η) is shown as a function of η for di�erent T in Fig-
ure 9.3. Let us make some basic observations on the values of αc(T, η). For High label

correlation and many

graph observations

allow one to solve

harder CD problems

all T: (i) if η = 0 (no correlation among the labels), one recovers αc = 1, the
transition’s position in the static DCSBM [GLM15], as expected; (ii) if η = 1,
αc = 1/

√
T, the static threshold obtained by averaging the adjacency ma-

trix over its T independent and identically distributed realizations. This re-
sult should be related to [KV20] that indeed suggests to used the averaged
adjacency matrix to perform SC when η → 1. We also numerically con�rm
that for all T, αc(T, η) is a decreasing function of η: higher label persistence
allows to solve harder problems.

9.3 main result
This section develops a “dynamical” Bethe-Hessian matrix associated to the
graph sequence {Gt(Vt, Et)}t=1,...,T , for which we show there exists at least
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Figure 9.4: Three successive snapshots of the a aggregate graph G(V , E). Classes
are emphasized by node colors and can evolve with time. Network edges,
that change over time, are indicated in solid lines, while “temporal edges”
in dashed lines connect each graph to its temporal neighbors. Nodes of
a common time step are circled in orange.

one eigenvector (recall that k = 2 classes so far) strongly aligned to the com-
munity labels if α > αc(T, η), thereby allowing us to design a CD algorithm
that achieves the detectability threshold. The eigenvectors containing infor-
mation can be as many as T, but only one of them is guaranteed to exist
when α > αc(T, η) and it can alone reconstruct communities.

Before introducing our main result, it is convenient to introduce the ag-

gregate graph G(V , E), de�ned as follows.

De�nition 9.4 (Aggregate graph). Letting {Gt}t=1...T be a sequence of graphs

generated as per De�nition 9.3, G = G(V , E) is the graph with V = ∪T
t=1Vt

and E =
(
∪T

t=1Et
)
∪
(
∪T−1

t=1 ∪n
i=1 (it, it+1)

)
. The adjacency and degree ma-

trices of G(V , E) are denoted with A, D ∈ NnT×nT
, respectively. In other

words, the graphs Gt(Vt, Et) are joined adding extra edges between the nodes

it and their temporal neighbours it±1.

Figure 9.4 gives a visual representation of the graph G(V , E).

9.3.1 the dynamical bethe-hessian ma-
trix

As in Chapter 5, our approach exploits a statistical physics analogy between
the modelling of spontaneous magnetization of spins with ferromagnetic in-
teraction and the modelling of communities of nodes in sparse graphs. We
de�ne the following Hamiltonian

5 on the graph G(V , E).

Hξ,h(s) = −

 T

∑
t=1

∑
(it,jt)∈Et

ath(ξ) sit sjt +
T−1

∑
t=1

∑
it∈Vt

ath(h) sit sit+1

 (9.5)

5 Note that a very similar cost function has been used in [Muc+10] to �nd communities in
dynamical graphs as the solution of an optimization problem.
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Figure 9.5: Sketch of the 4 stable modes for two communities and T = 2. In black we
indicate the direction si > 0, in white si < 0. The red edges correspond
to the frustrated edges connecting spins with opposite direction.

Here, the coupling constants ξ, h ∈ [0, 1) modulate the interaction among
nodes at time t and between the same node at time instants t and t + 1, re-
spectively and appear inside inverse hyperbolic tangents for notational ease.
Intuitively, the spin vector s can be mapped to the class a�liation vector
σ ∈ {±1}nT , in which σit = 1 if `it = 1 and σit = −1 otherwise. The �rst
term in the main parenthesis of (9.5) favors con�gurations in which neigh-
boring nodes have the same label, while the second term favors con�gura-
tions in which the label is kept across successive time instants, enforcing
persistence in the community evolution.

The mesoscale structure of G(V , E) determines the appearance of some
local minima in Hξ,h(s) like, for instance, the con�guration s = σ. A sketch
of such minima of Hξ,h(s) is provided for T = 2 in Figure 9.5. The lowest en-
ergy state corresponds to s = 1nT : this is the non-informative ferromagnetic

con�guration. Similarly, mode 3 of Figure 9.5 groups together nodes in the
same community and is equally useless for reconstruction. On the opposite,
modes 2 and 4 of Figure 9.5 divide the nodes according to the class structure
of G(V , E) and can be used for community reconstruction. In general, for k
classes and T > 2 time frames, kT such local minima arise, mixing together
time and class clusters. Note importantly that mode 1 always has a lower
energy than mode 3 and mode 2 a lower energy than mode 4. However, the
ordering of energies of modes 2 and 3 is in general not a priori known. We
will further comment on this remark which has important consequences for
the subsequent analysis as well as for the design of our proposed community
detection algorithm.

The eigenvectors corresponding to the smallest eigenvalues of the Bethe-
Hessian matrix (De�nition 2.2) associated to the Hamiltonian of Equation (9.5)
are strongly correlated with the con�gurations appearing in Figure 9.5 and
can therefore be used to perform DCD. From the results described in Sec-
tion 2.3.2, the dynamical Bethe-Hessian matrix Hξ,h ∈ RnT×nT associated
to the Hamiltonian of Equation (9.5) is de�ned as follows

The dynamical

Bethe-Hessian

matrix

(
Hξ,h

)
it,jt′

=


(

ξ2D(t)−ξ A(t)

1−ξ2 + 1+h2(φt−1)
1−h2 In

)
ij

if t = t′(
− h

1−h2 In

)
ij

if t = t′ ± 1,
(9.6)

where φt = 1 if t = 1 or t = T and φt = 2 otherwise. The aforementioned
lack of a precise knowledge of the relative position of the informative modes
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Figure 9.6: The 150 eigenvalues of Bξ,h with largest real part, for n = 10 000, T = 5,
η = 0.4, c = 10, cout = 4, θi ∼ [U (3, 10)]3. Left: ξ = 0.2, h = 0.9.
Right: ξ = 0.4, h = 0.7. The orange and black dashed lines are the
theoretical positions of the eigenvalues forming the informative and un-

informative families, respectively. The thickest of these lines correspond
to the leading eigenvalue of the respective family. The imaginary eigen-
values are represented with circles in the complex plane. The solid black
line is a part of the circle of radius Lξ,h.

in the energy spectrum of the Hamiltonian hampers the identi�cation of the
position of the corresponding informative eigenvectors of Hξ,h, which is of
major importance to design a SC algorithm based on Hξ,h.

9.3.2 community detectability with the
dynamic bethe-hessian

We thus now turn to our main result centred on the question of appropriately
choosing a pair (ξ, h) which ensures non-trivial community detection with
Hξ,h as soon as α > αc(T, η).

In order to determine the spectral properties of Hξ,h, we study the eigen-
values of the weighted non-backtracking matrix Bξ,h, to then exploit the re-
lation between the two spectra as per Theorem 2.1 and Claim 3.2. Recalling
the de�nition of the weighted non-backtracking matrix used in Section 3.2.3,
the expression of Bξ,h on the aggregate graph G(V , E) reads

The dynamical

non-backtracking

matrix

∀(ij), (kl) ∈ Ed,
(

Bξ,h
)
(ij)(kl) = δjk(1− δil) ωkl , (9.7)

where Ed is the set of directed edges of the aggregate graphG(V , E), ωkl = ξ

is (kl) is a spatial edge and ωkl = h if it is a temporal edge. The choice of a
proper parametrization (ξ, h) to perform non-trivial DCD with the dynamical
Bethe-Hessian matrix comes from the following central claim describing the
spectrum of Bξ,h, whose detailed derivation is provided in Appendix C.2.

Claim 9.2 (Spectrum of Bξ,h on sparse DDCSBM graphs). Let G(V , E) be a
graph generated as per De�nition 9.4 with k = 2 communities, Ca=b = cin,

Ca 6=b = cout and γ = (cin − cout)/(cin + cout). Recalling the de�nition of

MT(·, ·) from Claim 9.1, then, with high probability, in the n → ∞ limit, the

spectrum of Bξ,h can be described as follows:



9.3 main result 149

• the complex eigenvalues forming the bulk of Bξ,h are bounded by a disk

in the complex plane of radius Lξ,h =

√
λ
↓|·|
1 (MT(

√
cΦξ2, h));

• all the eigenvalues of Bξ,h of magnitude larger than Lξ,h are isolated and

are asymptotically close to one of the eigenvalues of either MT(
√

cΦξ,
√

h)
(in which case the eigenvectors are not correlated to the community la-

bels) or MT(
√

cΦξγ,
√

ηh) (in which case the eigenvectors are corre-

lated to the community labels).

Figure 9.6 con�rms numerically Claim 9.2. We choose to compute only
the 150 eigenvalues with largest real part to keep a reasonable computa-
tional time, while having a large value of n. From Claim 9.2, the position of
the isolated and bulk eigenvalues of Bξ,h is de�ned for all (ξ, h). Note that
two families of isolated eigenvectors appear in the spectrum of Bξ,h: one is
the informative family (related to the con�gurations 2, 4 of Figure 9.5) and
one is the uninformative family (related to con�gurations 1, 3 of Figure 9.5).
The ordering of the eigenvalues belonging to these two families is a priori
unknown and depends on ξ, h. Let us make a remark on an interesting be-
havior of the isolated eigenvalues of Bξ,h.

Remark 9.2 (Complex isolated eigenvalues in the spectrum of Bξ,h). Note
that the isolated eigenvalues of Bξ,h are asymptotically close to the eigenval-

ues of the matrix MT(·, ·). This matrix is real and non-negative, but it is not

symmetric. Consequently, its leading eigenvalue is certainly real (due to Perron-

Frobenius theorem), while the subsequent eigenvalues are potentially complex.

Although we cannot o�er a clear interpretation for the complex nature of some

of these isolated eigenvalues, our study is experimentally veri�ed to hold also

in this case as shown in the left plot of Figure 9.6.

Based on Claim 9.2, we now provide two choices of the parametrization
(ξ, h) that allow one to devise a SC algorithm based on the Bethe-Hessian
matrix to perform DCD as soon as α > αc(T, η).

The optimal Bethe-Hessian parametrization

The �rst proposed parametrization that allows one to perform non-trivial
DCD as soon as α > αc(T, η) consists in choosing (ξ, h) = (γ, η). Recalling
the results of Chapter 5, we note that, in this setting, γ = ζ−1

2 + on(1), the The optimal

parametrization is

obtained from the

relaxation of the

asymptotically Bayes

optimal BP equations

optimal parametrization of the static Bethe-Hessian matrix. The fact that γ

is (asymptotically) the inverse of ζ2 (and not ζ2), is just due to a notational
convenience: in fact in Chapter 5, r ≥ 1, while here ξ ≤ 1.

First of all we want to show that the matrix Bγ,η can be used for com-
munity reconstruction. This is a straightforward consequence of Claim 9.2:
letting ξ = γ and h = η, we obtain that the leading informative eigenvalue
is equal to λinfo,1 = λ

↓|·|
1 (MT (α, η)), while the radius of the bulk is equal to

Lλ,η =

√
λ
↓|·|
1 (MT (α, η)) =

√
λinfo,1. By de�nition, if α > αc(T, η), then

λinfo,1 > 1, therefore λinfo,1 > Lλ,η . So for all α > αc(T, η), λinfo,1 is an
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Figure 9.7: Left: spectrum in the complex plane of Bγ,η The vertical line is at 1,
while the circle has radius Lγ,η . Right: histogram of the eigenvalues of
Hγ,η . The vertical line is at λ = 0. For both simulations, T = 2, η = 0.4,
c = 6, cout = 1, θ = 1n, n = 2 000.

isolated eigenvalue in the spectrum of Bλ,η and it contains information on
the community labels.

The claim of optimality of the choice (γ, η) comes from the fact that, like
in the static case, this is the natural parametrization obtained linearising the
Bayes optimal BP equations. Let H be de�ned as follows:

H =

(
1+η

2
1−η

2
1+η

2
1−η

2

)

Letting a, b ∈ {1, 2}, the �xed point BP equations take the form [Gha+16,
Equations 5, 6, 8]

mjt,it(a) =
e− ft(a)

Zjt,it

(
∑

b
Hab mit,it+1(b)

)(
∑

b
Hab mit,it−1(b)

)
∏

lt∈∂it\jt
∑

b
Cabmit,lt(b)

mit+1,it(a) =
e− ft(a)

Zit+1,it

(
∑

b
Hab mit,it−1(b)

)
∏

lt∈∂it

∑
b

Cabmit,lt(b)

where

ft(a) =
1
n ∑

j∈Vt

∑
b

Cabmit,jt(b).

Expanding the above messages around the trivial �xed point mjt,it(1) =

1/2 + εit,jt , mit,it±1(2) = 1/2− εit,it±1 , we obtain

εjt,it = η(εit,it−1 + εit,it+1) + γ ∑
`t∈∂it\jt

εit,`t

εit+1,it = ηεit,it−1 + γ ∑
`t∈∂it

εit,`t .

These equations can be rewritten in synthetic form introducing exploiting
the non-backtracking matrix

Bγ,ηε = ε + h.o.t
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In agreement with our empirical observations, we predict that the informa-
tive eigenvalue λinfo,1 of Bλ,η has a twin companion eigenvalue asymptoti-
cally close to one. Recalling that if α > αc(T, η), then the radius of the bulk
of Bγ,η is Lγ,η > 1, we conclude that this is an eigenvalue inside the bulk of
Bγ,η and isolated down to the detectability threshold, like in the static case.
The left plot of Figure 9.7 con�rms this observation, evidencing that, indeed,
the matrix Bγ,η has such unitary eigenvalue inside its bulk.

Applying Theorem 2.1 it is easily shown that the dynamical Bethe-Hessian
matrix Hγ,η has a zero eigenvalue as shown in the right plot of Figure 9.7.
We summarize and formalize these results in the following claim.

Claim9.3 (Spectral clustering with Hγ,η). LetG(V , E) be an aggregate graph
obtained as in De�nition 9.4. As n → ∞, with high probability, the complex

bulk eigenvalues of Bγ,η are asymptotically bounded by a circle in the complex

plane of radius Lγ,η =

√
λ
↓|·|
1 (MT(α, η)).

Besides, if α > αc(T, η), then 1 < Lλ,η , 1 is an isolated eigenvalue of Bλ,η

and 0 is an isolated eigenvalue of Hλ,η , and the corresponding eigenvectors for

both matrices are correlated to the vector of community labels.

The matrix Hλ,η hence represents a natural extension of the optimal Bethe-
Hessian discussed in Chapter 5 for static CD. While from a theoretical per-
spective Claim 9.3 may seem a su�cient result, from a practical viewpoint a
fundamental piece of information is lacking: the location of the zero eigen-
value in the ordered set of eigenvalues of Hγ,η . We explained extensively
in Part II the importance of actually being able to locate the informative
eigenvalues of a matrix to design a SC algorithm and one of the big results
of Claim 5.1 concerns indeed the position of the informative eigenvalues of
the Bethe-Hessian. Unlike Claim 5.1, however, Claim 9.3 does not specify the
location of the informative eigenvalues. This is because, as we anticipated
already, the eigenvalues of informative and uninformative families described
in Claim 9.2 can potentially be in a shu�ed order, making it unpractical (if
not impossible) to locate the informative eigenvalues without a prior knowl-
edge of the values (γ, η). One may object that (γ, η) must be known to build
Hγ,η . It has to be recalled, however, that (γ, η) are generally not known in
advance and have to be estimated. The lack of knowledge of the position
and value of the informative eigenvalues, however, makes it impossible to
design an algorithm like 5.1 to estimate (γ, η) and perform DCD.

Before proceeding with the second possible parametrization that over-
comes this problem, let us formulate a further remark on the matrix Bγ,η ,
relating our results to those of [Gha+16].

Remark 9.3 (Comparison with the spectral method of [Gha+16]). In [Gha+16],
the authors propose a SCmethod based on the matrix Bγ,η , obtained linearising

the BP equations around their trivial �xed point as shown above. As we men-

tioned already in Section 9.1, this matrix needs to know the parameter γ in

order to be de�ned and the related SC algorithm cannot be straightforwardly

implemented since, as we just commented, γ is not easy to estimate.
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Figure 9.8: Left: spectrum in the complex plane of Bγd ,η The vertical line is at 1
and the circle has radius Lγd ,η = 1 In red, the 4 isolated eigenvalues of
Bγd ,η are evidenced. Right: histogram of the eigenvalues of Hγd ,η . The
vertical line is at λ = 0. For both simulations, T = 2, η = 0.4, c = 6,
cout = 1, θ = 1n, n = 2 000.

On top of this, in [Gha+16] the authors prescribed, for a general setting with

k communities, to perform SC on the k dominant eigenvectors of Bγ,η . Claim 9.2

however clearly evidences (in the case k = 2) that the k largest eigenvalues are
not necessarily informative. Consequently, using the k dominant eigenvectors

to perform SC may lead to poor performance, as evidenced in Figure 9.10.

Let us now show that an alternative parametrization (ξ, h) equally allows
one to perform DCD as soon as theoretically possible.

An alternative parametrization

The second parametrization (ξ, h) to achieve detectability down to the thresh-
old is inspired from the Bethe-Hessian of [SKZ14] that de�ned, for the staticRecall that in

[SKZ14], SC is

performed using Hr
for r =

√
cΦ

stochastic block model (SBM), a parametrization independent of cin − cout

to perform SC. This parametrization consists in choosing (ξ, h) = (γd, η),
where γd = αc(T, η)/

√
cΦ. Let us �rst con�rm that Bγd,η indeed has iso-

lated informative eigenvalues down to the detectability threshold.

Exploiting the result of Claim 9.2, the matrix Bγd,η has an eigenvector
correlated to the class labels equal to λinfo,1 = λ

↓|·|
1 (MT(

√
cΦγγd, η)). First

note that, by de�nition,
√

cΦγ2
d = αc(T, η), while

√
cΦγ2 = α. For α >

αc(T, η), then γ > γd, and, consequently
√

cΦγγd > αc(T, η). We then
conclude that λinfo,1 > 1. From Claim 9.2, we further have that the radius
of the bulk spectrum of Bγd,η is equal to Lγd,η = 1. As such, the informative
eigenvalue λinfo,1 of Bγd,η exists as soon as α > αc(T, η).

We now exploit Claim 3.3, that allows us to conclude that, since Lγd,η = 1,
then the smallest eigenvalue of the bulk (i.e., its left-edge) of Hγd,η is asymp-
totically close to zero and all the eigenvectors associated to the isolated
eigenvalues of Bγd,η . Among these, there is at least one (the one associated
to λinfo,1) that is informative.

These results are visually supported by Figure 9.8 and summarized with
the following claim.
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Claim 9.4 (Spectral clustering with Hγd,η). Let γd = αc(T,η)√
cΦ

. As n→ ∞, the

following facts are veri�ed with high probability

• the complex eigenvalues forming the bulk spectrum of Bλd,η are asymp-

totically bounded within a disk in the complex plane of radius Lγd,η = 1:

• the smallest eigenvalues of the bulk spectrum of Hλd,η tend to 0+;

• the number of isolated negative eigenvalues of Hλd,η is equal to the num-

ber of real isolated eigenvalues of Bλd,η greater than 1.

In particular, if α > αc(T, η), at least one of the isolated real eigenvalues of

Bλd,η larger than 1 and one of the negative isolated eigenvalues of Hλd,η are

informative in the sense that their associated eigenvectors are correlated to the

vector of community labels.

Claim 9.4 indicates that, if α > αc(T, η), certainly there is one informative
eigenvector (more precisely, mode 2 of Figure 9.5) which is associated with
one of the few isolated negative eigenvalues of Hγd,η . Other informative eigen-
vectors (e.g. mode 4 of Figure 9.5) may be associated to negative eigenvalues
of Hγd,η , but their existence is not guaranteed. The algorithmic advantage
of Claim 9.4 with respect to Claim 9.3 is that, albeit the exact location of
the informative eigenvectors is still unknown, for sure they are attached
to negative eigenvalues of Hγd,η . We empirically con�rm that using all the
eigenvectors associated with the isolated negative eigenvalues (instead of
only the desired informative eigenvector with unknown location) to form
a low dimensional vector embedding of the nodes is redundant but it does
not severely compromise the performance of the �nal k-means step. The
choice ξ = γd and h = η therefore almost immediately induces an explicit
algorithm applicable to arbitrary networks and which, as later discussed in
Section 9.4, straightforwardly extends to graphs with k > 2 communities.
Before detailing the algorithmic implementation of a SC algorithm based on
Hγd,η , let us formulate the following remark.

Remark 9.4 (Comparison with the static Bethe-Hessian of [SKZ14]). Re-

calling that the parameter γ behaves as the inverse of r appearing in the static
Bethe-Hessian Hr, it is easily shown that the parametrization ξ = γd is a gen-

eralization to the dynamical case of the choice r =
√

cΦ proposed in [SKZ14]

for CD which is recovered for T = 1 (or equivalently for η = 0) for which
we have that αc(T, η) = 1. While γd allows one to devise a well de�ned SC

algorithm, like in the static case, the choice ξ = γd is suboptimal and does not

properly keep into account for the degree heterogeneity of the graph.

With these results at hand, we are now in position to consider how Claim 9.4
can be translated into a practical algorithm that will then be tested on syn-
thetic graphs generated from the DDCSBM.
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Algorithm 9.1 : Community detection in sparse dynamical graphs
Input : Adjacency matrices {A(t)}t=1,...,T of the undirected graphs

{Gt}t=1,...,T ; label persistence, η; number of clusters k.
Output : Estimated label vector ˆ̀ ∈ {1, . . . , k}nT

1 begin

2 Compute: d(t)i ← ∑n
j=1 A(t)

ij , c← 1
nT ∑T

t=1 ∑n
i=1 d(t)i ,

Φ← 1
nTc2 ∑T

t=1 ∑n
i=1

(
d(t)i

)2
;

3 Compute: αc(T, η) as in Claim 9.1, γd ← αc(T,η)√
cΦ

;
4 Stack the κ eigenvectors of Hγd,η with negative eigenvalues in

the columns of X ∈ RnT×κ ;
5 Normalize the rows of Xi,• ← Xi,•/‖Xi,•‖;
6 for t = 1 : T do

7 Estimate the community labels { ˆ̀ it}i=1,...n using k-class
k-means on the rows {Xit}i=1,...,n

8 end

9 return
ˆ̀ ∈ {1, . . . , k}nT .

10 end

9.4 algorithm and performance
comparison

9.4.1 algorithm implementation
We have previously summarized the main ideas behind a dynamical version
of spectral clustering based on Hγd,η . These form the core of Algorithm 9.1.
Yet, in order to devise a practical algorithm, applicable to a broad range of dy-
namical graphs, some aspects that go beyond the DDCSBM assumption should
be taken into account.

So far, we dealt with k = 2 equal-size communities for which the DDCSBM
threshold is well de�ned. Real networks may of course have multiple classes
with asymmetrical sizes. As in the static case, we argue that, under Assump-
tion 5.1, the left edge of the bulk spectrum of Hγd,η is still asymptotically
close to zero and that some of the eigenvectors associated with the isolated
negative eigenvalues carry information for community reconstruction.6 The
value k is, in practice, also likely unknown. This also does not a�ect the idea
of the algorithm which exploits all eigenvectors associated to the negative
eigenvalues of Hγd,η , without the need of knowing k. The very choice of k is
only required by k-means in the last step of SC and may be performed using
o�-the-shelf k-means compliant tools, e.g., the silhouettes method [Rou87].

6 In passing, while αc(T, η) is well de�ned regardless of k, for k > 2 classes of arbitrary size
its value no longer corresponds to the position of a detectability threshold.
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Figure 9.9: Overlap comparison at t = T for Algorithm 9.1 (on the left) vs. [KV20]
(on the right), in color gradient, for various detectability hardness levels
α (x-axis) and label persistence η (y-axis); n = 10 000, T = 5, c = 10,
θ = 1n; averaged over 4 samples.

A further important remark is that η is an input of Algorithm 9.1. If un-
known, as it would in general be, one may choose an arbitrary h ∈ [0, 1)
and ξ = αc(T, h), to then perform spectral clustering on Hξ,h: the leftmost
edge of the bulk spectrum of Hξ,h is asymptotically close to zero for all h
and consequently Algorithm 9.1 can be used in the same form. However, for
a mismatched h, the detectability threshold now occurs beyond the optimal
αc(T, η). Close to the transition, this mismatch would give rise to fewer in-
formative isolated negative eigenvalues than expected, resulting in a poor
quality label assignment. As a workaround, one may browse through a dis-
crete set of values for h and extract the h maximizing some quality measure,
such as the resulting clustering modularity.

We further underline that in step 5, Algorithm 9.1 performs the hyper-
sphere normalization step. Although not fully justi�ed from a theoretical
standpoint, the empirical evidence showed in Part II that this step helps to
signi�cantly improve the e�ciency of the k-means step, correcting to some
extent the deleterious contribution of an arbitrary degree distribution.

From a computational point of view, the bottleneck of Algorithm 9.1 is
to compute the embedding X. The number of negative eigenvalues κ is not
a priori known and only suspected to be in the interval {k, . . . , kT}. The
strategy based on polynomial approximation and random projections de-
tailed in Section 7.1.1 is here particularly adapted, allows us to estimate The number κ of

negative eigenvalues

to be computed,

generally

depends on T

κ with O(cnT) operations and to compute X with O(ncTk2) operations
in the best case scenario and O(ncT4k3) operation in the worst case. To
give an order of magnitude, a simulation of Algorithm 9.1 for n = 105,
T = 5 (resp., n = 5 000, T = 100), k = 2, c = 6, η = 0.5, Φ = 1.6,
α = 2αc(T, η) takes on average approximately 1 minute (resp., 40 minutes)
with its CoDeBetHe.jl implementation.

https://github.com/lorenzodallamico/CoDeBetHe.jl


156 spectral clustering in dynamical graphs

0.5 1.0 1.5 2.0 2.5
/ c(T, )

0.0

0.2

0.4

0.6

0.8

1.0

ov

BP
Alg 9.1
dyn A

dyn B
static BH

dyn Louvain
dyn B opt

1 2 3 4
/ c(T, )

0.0

0.2

0.4

0.6

0.8

1.0

Alg 9.1 Static BH opt. BH dyn

Figure 9.10: Left: mean overlap across all values of t, as a function of α, for Al-
gorithm 9.1, BP [Gha+16], the dynamic adjacency matrix of [KV20]
(dyn A), the dynamical non-backtracking of [Gha+16] (dyn B and dyn B
opt), the static Bethe-Hessian of [DCT19] (static BH) and the dynami-
cal Louvain algorithm of [Muc+10] (dyn Louvain); n = 5 000, T = 4,
c = 6, η = 0.7, θ = 1n; averaged over 20 samples (3 for BP). For
all plots, k = 2. Right: overlap comparison of Algorithm 9.1, the static
Bethe-Hessian of [DCT20a] (StaticBH) and the reconstruction obtained
using the eigenvector with zero eigenvalue of Hγ,η (opt. BHdyn). For
this simulation n = 25 000, k = 2, θ = 1n, c = 6, T = 4, η = 0.9.
Averages are taken over 10 samples.

9.4.2 performance comparison on syn-
thetic datasets

Figure 9.9 compares the overlap as a function of α and η for Algorithm 9.1
versus the adjacency averaging method of [KV20] (which we recall assumes
η = 1 − on(1)). The overlap is only considered at t = T so to compare
Algorithm 9.1 on even grounds with [KV20] which only outputs one par-
tition (rather than one for every t). The theoretical detectability threshold
line α = αc(T, η) visually con�rms the ability of Algorithm 9.1 to assignAlgorithm 9.1

performs DCD for any

value of η
non trivial class labels as soon as theoretically possible, as opposed to the
method of [KV20] which severely fails at small values of η.

The left plot of Figure 9.10 then compares the average overlap perfor-
mance of Algorithm 9.1 against competing methods, for varying detection
complexities α/αc(T, η). Algorithm 9.1 is outperformed only by the BP algo-
rithm,7 but has a sensibly reduced computational cost. As we underlined al-
ready with Remark 9.3, for the non-backtracking method of [Gha+16] (“dyn
B”), the authors suggest to use (as we did here) the eigenvector associated
to the second largest eigenvalue of Bγ,η , which, as Hγ,η , may also have in-
formative and uninformative eigenvalues in reversed order. The curve “dyn
B opt” shows the performance obtained using all the isolated eigenvectors
of Bγ,η and it con�rms, in agreement with Claim 9.3, that Bγ,η can indeed

7 The codes used to obtain the BP performance displayed in Figure 9.10 are courtesy of Amir
Ghasemian, author of [Gha+16].
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Figure 9.11: Modularity as a function of time for Algorithm 9.1 for η = 0.55, the dy-
namic adjacency matrix of [KV20] (dyn A), the dynamic Louvain algo-
rithm [Muc+10] (dyn Louvain) and the static Bethe-Hessian of [DCT19]
(static BH). The graph {Gt}t=1,...,T is obtained from the Primary school

network [GBC14; Ste+11] dataset, as in Section 9.4.3. For Algorithm 9.1,
[DCT19] and [KV20], k = 10 is imposed.

make non-trivial community reconstruction for all α > αc(T, η). Note that,
as in the static case [Krz+13; SKZ14], Bγ,η is outperformed by Hγd,η which,
additionally, is symmetric and smaller in size, is well de�ned regardless of γ

and is, therefore, a more suitable candidate for CD.

Interestingly, for large values of α, Algorithm 9.1 is slightly outperformed
by the static Bethe-Hessian of [DCT19], independently run at each time-step.
As discussed at the end of Section 9.3, the choice ξ = γd is sub-optimal
compared to the optimal (but out-of-reach in practice) choice ξ = γ, the
di�erence becoming more visible as α increases away from αc. Supposing
one has access to an oracle for γ, running Algorithm 9.1 on Hγ,η outper-
forms systematically the static Bethe-Hessian, as shown in the right plot of
Figure 9.10. From a dynamical viewpoint, also, the large α regime is of least
importance as a static algorithm can, alone, output a perfect reconstruction.

For completeness, Appendix C.3 provides further numerical performance
comparison tests for di�erent values of η, Φ, for k > 2, for larger values of
n and T, and for graphs with clusters of di�erent average sizes.

9.4.3 test on sociopatterns primary school
This section shows the results of our experiments on the Primary school net-
work [GBC14; Ste+11] of the SocioPatterns project. The dataset con-
tains a temporal series of contacts between children and teachers of ten
classes of a primary school. For each time 1 ≤ t ≤ T, Gt is obtained con-
sidering all interactions from time t to time t + 15 min, starting from t1 =

8:30 am until tT = 5 pm for T = 34. Figure 9.11 compares the modularity
as a function of time for di�erent clustering techniques. We empirically ob-
serve that, for this dataset, multiple values of η give similar results: this is

www.sociopatterns.org
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not surprising because the clusters are here well delineated and we are in the
(less interesting) easy detection regime. The value η = 0.55 is considered as
an input of Algorithm 9.1, because it approximately matches the value of η

estimated from the inferred label vector ˆ̀ (see Equation (9.1)).
Figure 9.11 shows that Algorithm 9.1 performs better than [KV20; Muc+10]

at all times, with a drastic gain during the lunch break, in which the commu-
nity structure is harder to delineate. As compared to the static Bethe-Hessian,
Algorithm 9.1 is slightly outperformed only on some times during the lunch
break, while for other times it bene�ts from the label correlation. De�ning a
unique, time independent η certainly hampers the performance on this spe-
ci�c dataset in which a large η is expected during the lesson times, while a
small η may be more appropriate during the lunch break.

9.5 conclusion
In this chapter we tailored a novel spectral algorithm for CD on dynamical
graphs. The proposed Algorithm 9.1 is capable of reconstructing communi-
ties as soon as theoretically possible, thereby largely outperforming state-of-
the-art competing spectral approaches (especially when classes have a short-
term persistence) while only marginally under-performing the optimal but
more intensive BP algorithm.

A delicate feature of Algorithm 9.1 concerns the estimation of the class-
persistence parameter η, if not available. We hinted in Section 9.4 at a greedy
line-search solution which is however computationally ine�cient and lacks
of a sound theoretical support. This needs be addressed for Algorithm 9.1 to
be more self-contained and applicable to real networks.

Beyond this technical detail, the present analysis only scratches the sur-
face of dynamical community detection: the problem in itself is vast and
many degrees of freedom have not been here accounted for. The label per-
sistence η and community strength matrix C (and thus the parameter γ in a
symmetric two-class setting) are likely to evolve with time as well. We em-
pirically observed that Algorithm 9.1 naturally extends to this setting, each
temporal block of the matrix H(·,·) now using its corresponding γ

(t)
d and

ηt. Yet, while Algorithm 9.1 seems resilient to a more advanced dynamical
framework, it requires a much more involved theoretical description.

Nonetheless, this chapter showed that the results of Part II can be gen-
eralized to more involved settings and that the steps needed to devise an
e�cient SC algorithms are well delineated and can be retraced for more gen-
eral clustering problems than CD on static, undirected graphs.
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Abstract

This chapter extends our work on SC to the weighted setting. In particular a new relation

between the Nishimori temperature parametrizing a distribution P and the Bethe free
energy on random Erdős-Rényi graphs with edge weights distributed according to P is

unveiled. Estimating the Nishimori temperature being a task of major importance in

Bayesian inference problems, as a practical corollary of this new relation, a numerical

method is proposed to accurately estimate the Nishimori temperature from the eigen-

values of the Bethe Hessian matrix of the weighted graph. The practical application

of this result is in the i.i.d. sparsi�cation of kernel matrices for cost e�cient spectral
clustering (SC) of high dimensional vectors.
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Spectral clustering (SC) techniques can be adopted as a practical correlation
clustering algorithm, taking high-dimensional feature vectors [BBC04] as an
input. This is done by �rst de�ning a kernel matrix representation that en-
codes the pairwise similarity between the elements of the input dataset and
then extracting few relevant eigenvectors that provide a small dimensional
representation of the initial dataset.

This problem has concrete applications to image, sound, or sentence clas-
si�cation [Lan+16] but, as we mentioned in the Introduction chapter of this
manuscript, one of the main pitfalls of SC to categorize high dimensional
vectors is its computational complexity and sampling techniques are often
adopted to decrease the computational cost of SC [TL20].

In this chapter we consider a simple generative model to study the corre-
lation clustering problem on kernel matrices with very few non-zero entries,
allowing one to drastically reduce the computational complexity of SC. We
then show the explicit relation between the considered generative model
and the random bond Ising model (RBIM) in statistical physics. Our main re-
sult is a conjecture relating the smallest eigenvalue of the Bethe-Hessian
matrix and the Nishimori temperature [Nis81] appearing in the physics of
spin glasses. This relation allows us to devise an e�ective algorithm for the
sparsi�ed (hence cost e�cient) version of SC.

10.1 correlation clustering

10.1.1 introduction

Let {zi}i=1,...,n be an n-vector dataset with zi ∈ Rdfeat . These vectors repre-
sent discriminating features of some two-class data (say images) to be clus-
tered in a fully unsupervised manner. In typical modern machine learning,
dfeat is of the order of a few thousands for images and a few hundreds for
natural language text representations, and it is not rare to try and classify
up to millions of data vectors zi. The most elementary way to classify the
vectors {zi}i=1,...,n is simply to directly run k-means algorithm in the dfeat-
dimensional feature space. K-means is however known to fail for large dfeat
[KKZ09] due to the fact that distances tend to concentrate in high dimen-
sionality, a phenomenon that goes under the name of curse of dimensional-

ity [Bel15]. The top line of Figure 10.1 provides a visualization of this phe-
nomenon. To obtain this plot, we consider a label vector ` ∈ {1, 2}n and
draw n Gaussian vectors {zi}i=1,...,n with covariance matrix Idfeat and mean
µ`i . On the left we show a scatter plot between two arbitrary components
of the vectors {zi}i=1,...,n, denoting with a di�erent colour code the entries
related to either class. This plot clearly evidences the e�ect of the curse of

dimensionality. Furthermore, letting Z ∈ Rn×dfeat be the matrix containing
in its rows the vectors {zi}i=1,...,n, on the right of the �rst row we plot the
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Figure 10.1: Example of dimensionality reduction using the covariance matrix
MZ = 1

dfeat
ZZT . Two Gaussian isotropic blobs of n = 4 000 vectors

in dfeat = 3 000 with di�erent means and identity covariance are con-
sidered. Top: on the left a scatter plot of two arbitrary chosen features
in which the colour code shows the original label assignment; on the
left the corresponding covariance matrix. Bottom: on the left the char-
acteristic features after dimensionality reduction using the two leading
eigenvectors of MZ; on the right the corresponding covariance matrix.

covariance matrix1 MZ = 1
dfeat

ZZT which just appears as a white square
because all its entries are approximately equal.

A classical workaround is to perform a dimensionality reduction of the
input vectors, embedding them in a lower dimensional space. A good em-
bedding has the role to map “similar” vectors in high dimensions to points Pairwise

measurements can be

encoded with

weighted edges

of a graph

that are close in the embedded space. The analogy with SC for CD is clear: in
that context, “similar” nodes correspond to nodes in the same community.

The most popular technique exploits a spectral approach [Ham+04; Sau+06;
Gho06]: one starts by de�ning a kernel matrix K({z}) ∈ Rn×n, the en-
try Kij({z}) of which evaluates some a�nity metric between zi and zj; a
collection of eigenvectors x1, . . . , xk for k typically equal (or close) to the
number of classes are extracted and stacked in the columns of the matrix
X ∈ Rn×k ; the rows of X form the small dimensional embedding on which
k-means can be safely run. A popular a�nity function is merely the corre-
lation K({z}) = 1

dfeat
ZZT , which is the choice adopted for kernel principal

1 Note the the entry ij of the covariance matrix is

(MZ)ij =
1

dfeat
zT

i zj =
1

2dfeat
[‖zi‖2 + ‖zi‖2 − ‖zi − zj‖2] = µ +

1
2dfeat

‖zi − zj‖2 + odfeat
(1)

and is therefore directly related to the euclidean distance between the points in Rdfeat .
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component analysis [Pea01], but other choices exist, such as the heat kernel
Kij({z}) = exp(−‖zi − zj‖2/2ν2) for some ν > 0, for instance. A visual
example of how dimensionality reduction allows one to cluster high dimen-
sional vectors is shown in the bottom row of Figure 10.1.

For large dimensional datasets, the computational complexity of building
K({z}) may become prohibitive: for dfeat, n beyond a few thousands, the
O(dfeatn2) cost of building K({z}) added to the (at least) O(n2) cost of com-
puting the leading eigenvectors, makes SC hardly achievable on a modern
home computer. To drastically decrease the computational complexity one
may proceed to a two-level sparsi�cation as recently proposed in [Zar+20;
CCB21]: by randomly discarding elements of the dfeat-dimensional featuresSparse kernel

matrices improve the

computational

complexity of SC

zi and by randomly dropping a number of evaluations of the correlations
Kij({z}). This operation of course impedes the clustering performance, but,
as surprisingly proved in [Zar+20; CCB21] under a “still rather dense graph”
regime, the performance loss is negligible for a wide range of sparsity levels.
To this end, let S ∈ {0, 1}n×p and H ∈ {0, 1}n×n (symmetric) be Bernoulli
masks with parameters

√
κ/dfeat and c/n, respectively.2 The resulting spar-

si�ed kernel matrix then becomes

J̃ = K({z̃}) ◦ H, where z̃i,l = ziSi,l . (10.1)

i.e., each entry of each of the feature vectors zi is kept only with probability√
κ/dfeat, while each measurement Kij({z̃}) is only performed with prob-

ability c/n. The computational complexity to build J̃ is thus scaled down
to O(κcn). As just mentioned, in [Zar+20; CCB21] the authors still have to
consider (for mathematical convenience) a rather dense regime in which c
grows su�ciently fast with n and in practice do not solve the computational
complexity problem.

Our goal is to devise a SC algorithm that is capable to operate in the sparse
regime (c = On(1)), with computational complexity linear in n. To do so, we
observe that the matrix J̃ of Equation (10.1) can be interpreted as a weighted
adjacency matrix of a graph. In fact, every ij so that J̃ij = 0 corresponds
to a missing measurement or, in graph language, to a missing edge. On the
opposite, when J̃ij 6= 0, then it represents the weight of the edge (ij). This
allows us to immediately rephrase the problem of sparsi�cation of kernel
matrices in the graph-theoretic language adopted in the previous chapters.

Following the same methodological pattern adopted so far, we now pro-
pose a generative model for J̃ on which our theoretical results will be based.
First, we introduce an intermediate matrix J, generated as follows.

De�nition 10.1 (Generative model of J). Let G(V , E) be a realization of a

Erdős-Rényi graph of size n (De�nition 1.9) with expected average degree c.
Further let J ∈ Rn×n

be a weighted adjacency matrix on G(V , E) and dis-

tributed according to the following generative model. For all edges (ij) ∈ E

2 The choice of c is not a coincidence: H will enforce an average number of measurements per
node (in graph-theory language, a degree) of c to the resulting graph.
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the entries Jij are generated independently (up to symmetry), for some βN > 0,
according to the distribution P

P(x) = p0(|x|) eβNx, (10.2)

where p0(·) is an arbitrary non-negative function satisfying the normalization

condition

∫ ∞
−∞ dx p0(|x|)eβNx = 1. If (ij) /∈ E , then Jij = 0.

J

J

Note that, although not very customary when dealing with weighted graphs,
according to De�nition 10.1, Jij may be negative. We called J an “interme-
diate” matrix because it is helpful to de�ne a generative model for J̃. Sup-
pose that the vector ` ∈ {1, 2}n assigns a label to each node in V . De�ne
σ ∈ {±1}n so that σi = 1 if `i = 1 and σi = −1 otherwise. Let J be
generated as per De�nition 10.1, then the matrix J̃ is obtained as follows

J̃ = J ◦ σσT. (10.3)

We now detail the main ingredients motivating the considered generative
model for the matrix J̃.

• The expectation of J̃: from De�nition 10.1, combined with (10.3), the
expectation of a non-zero entry of J̃ reads E[ J̃ij] = E[Jij]σiσj. The
expectation E[Jij] is the same for all (ij) ∈ E and it is positive, in fact

E[x] =
∫ ∞

−∞
dx p0(|x|)eβNx x =

∫ ∞

0
dx p0(|x|) 2sh(βNx) x︸ ︷︷ ︸

>0

,

consequently, we immediately see that sign of E[ J̃ij] is positive for
i, j in the same class and it is negative otherwise. This is a reasonable
requirement that the matrix J̃ de�ned in Equation (10.1) should satisfy
and it implies that, on average, Kij({z}) is larger when `i = `j. This is
readily veri�ed in the Gaussian example considered in Figure 10.1 for
µ1 = −µ2 in which, letting Kij({z}) = 1

dfeat
zT

i zj, then E[ J̃ij] ∝ σiσj. It
must be noted that the matrix J̃ of Equation (10.1) must satisfy J̃1n =

0n to be reasonably approximated by J̃ as in Equation (10.3). This can
however be easily obtained shifting all the input vectors {z̃i}i=1,...,n =

{zi − f}i=1,...,n, where f ∈ Rdfeat is an i-independent vector.
Further note that, since the function p0(|x|) needs not to be speci�ed,
the considered generative model includes a large number of random
matrices satisfying the condition E[ J̃ij] = σiσj.

• The noise in J̃: the parameter βN (that is the main focus of the re-
mainder of the chapter) controls the noise in the realization of J̃. In
fact, considering the limit βN → 0, we get P(x) → p0(|x|) and the
sign of Jij (and consequently of J̃ij) is essentially random. On the oppo-
site, when βN → ∞, Jij > 0 with high probability and consequently
sign( J̃ij) = σiσj. Tuning βN between these two extremes, one deter-
mines the likelihood that sign(Jij) = σiσj: the smaller this likelihood
is, the more relevant is the contribution of the noise, allowing the con-
sidered generative model to recreate hard detection tasks.
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• The independence hypothesis: a major concern comparing the matrix
J̃ de�ned as per Equation (10.1) and (10.3) is certainly the indepen-
dence of the entries assumed in De�nition 10.1. In fact, by construc-
tion, the entries Kij({z}), Kik({z}) and Kjk({z}) are far from being
independent. Independence however asymptotically holds between
the non-zero entries of J̃ for a su�cient level of sparsi�cation as a
consequence of the absence of short cycles in the underlying Erdős-
Rényi graph. In the example we gave, if (ij), (ik) ∈ E , then P[(jk) ∈
E ] = on(1), hence the dependence of Kjk({z}) on Kij({z}), Kik({z})
can be neglected.

For these reasons, we claim that devising a SC algorithm to infer the vector
σ from a realization of J̃ allows one to cluster the input vectors {zi}i=1,...,n
into their genuine classes. We now formalize the problem from a Bayesian
perspective, describing its clear relation with statistical physics.

10.1.2 from bayesian inference to sta-
tistical physics

Let G(V , E) be the realization3 of an Erdős-Rényi graph whose nodes are
divided in two non-overlapping classes, labelled via the vector σ ∈ {±1}n

and let J̃ ∈ Rn×n be the matrix generated according to Equation (10.3). Then
the following relation holds:

P( J̃|σ) = ∏
(ij)∈E

p0(| J̃ij|)eβN J̃ijσiσj .

In order to infer the vector σ from a realization of J̃ we may express the
posterior probability distribution as follows:

P(σ| J̃) = P( J̃|σ)P(σ)

P( J̃)
=

1
ZβN, J̃

exp

 ∑
(ij)∈E

βN J̃ijσiσj

 . (10.4)

This is the fundamental relation of Bayes optimal inference. Note that com-
puting the marginals of P(σ| J̃) is equivalent to determine the magnetization
of an Ising model on J̃ at βN (see Chapter 2), later referred to as Nishimori

temperature [Nis81].

The relation between βN and the Ising model has a long history [Nis81]
in the physics of disordered systems [BY86] that raised the scienti�c inter-
est even before its relation with Bayes inference was unveiled [Iba99]. To
explain the importance of the Nishimori temperature in statistical physics,
let us introduce the random bond Ising model (RBIM). Let HJ(s) be the Ising
Hamiltonian (Equation (2.2)) associated to a weighted graph J generated ac-
cording to De�nition 10.1 and denote with µ(s) the Boltzmann distribution:

3 The graph G(V , E) is thus �xed and not a random variable.
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HJ(s) = − ∑
(ij)∈E

Jijsisj, (10.5)

µβ(s) =
1

Zβ,J
e−βHJ(s). (10.6)

Equations (10.5, 10.6) de�ne the RBIM in which, we recall, βN is a parameter
of the generative model of J. Nishimori noticed in [Nis81] that at β = βN,
i.e., when the temperature of the system coincides with the Nishimori tem-
perature, the exact expression of E

[
〈HJ(s)〉β

]
can be computed with el-

ementary mathematical tools, where 〈·〉β denotes the averaging over the
Boltzmann distribution (10.6) while E[·] is the averaging over the distribu-
tion of Equation (10.2). It has also been shown [NS01; ZK16, for instance]
that the RBIM at the Nishimori temperature is either in the ferromagnetic

con�guration (in which 〈si〉β > 0 for all i) or in the paramagnetic con�gu-
ration (for which 〈si〉β = 0 for all i). In particular, the system is never in the
spin-glass phase under which local order of s appears despite there being no
global magnetization. These relevant properties drew research attention to
this particular temperature [Geo+85; GRL01; TPV09] since [Nis81].

Relating the Bayes optimal solution (10.4) with the RBIM (10.6) is trivially
done introducing a gauge transformation. If fact, let s̃i = siσi and recall that
J̃ij = Jijσiσj, then

HJ(s) = − ∑
(ij)∈E

Jijsisj = − ∑
(ij)∈E

J̃ijσiσj s̃iσi s̃jσj = − ∑
(ij)∈E

J̃ij s̃i s̃j,

where we exploited σ2
i = 1 for all i. This allows one to create an explicit

mapping between the posterior distribution of σ and the distribution of s̃
and to use the powerful tools and theoretical results borrowed from statis-
tical physics to devise an e�cient algorithm to perform clustering. In the
Bayes optimal inference, however, the value of βN must be known, an as-
sumption that for unsupervised clustering tasks is often unrealistic. Earlier
works have resorted to studying the problem of mismatched inference, i.e.
inference performed for β 6= βN [ZK16].

10.1.3 our contribution: relating nishi-
mori to bethe

Our main result consists in going beyond mismatched inference by provid-
ing an e�cient estimate of the Nishimori temperature, βN. To this end, we
�rst draw an explicit relation between βN and the smallest eigenvalue of the
(weighted) Bethe-Hessian matrix; this relation holds under the previously in-
troduced setting, so in particular for a matrix J supported over a (possibly
sparse) Erdős-Rényi graph G(V , E). Besides, we observe and argue that, al-
though the Bethe approximation is particularly adapted to sparse (locally
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tree-like) graphs G(V , E), the Nishimori-Bethe relation holds for any degree
of sparsity (that is, even when G(V , E) does not behave locally as a tree).

The main consequences of the Nishimori-Bethe relation, and our main
contributions, consist in

• the design of a new e�cient spectral algorithm which estimates βN

with asymptotically perfect accuracy; the algorithm is based on an
iterative fast search of a well-parametrized Bethe-Hessian matrix with
the smallest amplitude eigenvalue close to zero;

• a new spectral algorithm to approximately solve the Bayesian node
classi�cation inference problem of Equation (10.4), which outperforms
commonly deployed state-of-the-art alternatives. We in particular claim
that this spectral algorithm is capable of performing non trivial infer-
ence as soon as the Bayes optimal solution can;

• although we claim that these algorithms are still valid under dense
graphs G(V , E), they are speci�cally adapted to the sparse regime
where c = On(1); this practically allows for small computational
and memory storage costs when performing SC on large datasets; we
speci�cally support this fact by a concrete application to the classi�-
cation of 40 000 high resolution images using our proposed sparse but
extremely e�cient spectral algorithm.

Given the trivial relation between the Bayes optimal inference problem
and studying the magnetization of the RBIM at β = βN, we chose, for simplic-
ity, to work with the matrix J rather than J̃. Several relations will however
be made to relate the physics and inference results.

Let us now proceed with some relevant properties of the Nishimori tem-
perature in the RBIM the will be of utmost importance in the remainder.

10.2 basic properties of the ran-
dom bond ising model

10.2.1 phase diagram

Consider a realization of a Erdős-Rényi graph G(V , E) with expected aver-
age degree c. Let J ∈ Rn×n be a weighted adjacency matrix associated to
G(V , E) and generated as per De�nition 10.1. We want to study the phase
diagram, i.e. the behavior of 〈s〉β, for s a random variable distributed accord-
ing to Equations (10.5,10.6). Figure 10.2 displays this phase diagram for the
±J model which corresponds to the particular choice of p0(|x|) leading to

P(x) = pδ(x− J0) + (1− p)δ(x + J0), for p ∈ [1/2, 1], J0 ∈ R+,
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Figure 10.2: Phase diagram of the RBIM for Jij ∈ {−1, 1}. The x axis goes from 1
2

for βN = 0 to 1 for βN → ∞. The y axis represents T, the inverse of
β. The dashed green line is the inverse of βF, the dash dotted blue line
is the inverse of βSG and the solid red line is the inverse of βN.

but qualitatively similar diagram can be obtained for di�erent choices of
p0(|x|), like the Edwards-Anderson model, for instance [EA75] in which

P(x) =
1√

2πν2
exp

{
− (x− J0)

2

2ν2

}
.

To best understand the phase diagram in Figure 10.2, �rst consider the
role played by the two parameters β and βN. For increasing values of βN,
there is a larger probability for each edge Jij to carry a positive weight and
the minimum of HJ(s) is achieved for s ≈ 1n. For small values of βN, in-
stead, multiple local minima appear. Concerning β, instead, for small val-
ues, the Boltzmann distribution (Equation (10.6)) tends towards a uniform
distribution, while, for large values, the con�gurations with small energy
HJ(s) have a larger probability. Consequently, for large β and βN the aver-
age con�guration of s tends to align towards 1n: this corresponds to the fer-
romagnetic con�guration. Conversely, for small values of βN, several edges
carry a negative weight, introducing frustration in the system that is found
in the spin-glass phase, for which local order of the spins may be observed
( 1

n ∑i〈si〉2β 6= 0), but globally the magnetization is null ( 1
n ∑i〈si〉β = 0). Fi-

nally, at large values of β, the system is in the paramagnetic phase, for which
the spins are randomly aligned and 〈s〉β = 0n.

In the particular case where G(V , E) is a sparse Erdős-Rényi random
graph, the Bethe approximation (2.3.2) predicts the asymptotically exact po-
sition of the transitions between the three phases: the paramagnetic-ferroma-

gnetic transition occurs at β = βF and the paramagnetic-spin glass transi-
tion occurs at β = βSG, also known as the de Almeida-Thouless transition
[Tho86]. We recall from Section 3.4 that the values of βF (resp. βSG) is de-
termined imposing the leading eigenvalue (resp. the radius of the bulk) of
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the weighted non-backtracking with weights equal to th(βJe) equals one.
Exploiting Theorem 3.4 [SM20], this leads to:

c ·E[th(βF Jij)] := 1 (10.7)
c ·E[th2(βSG Jij)] := 1. (10.8)

Given these premises, we now discuss some relevant properties valid on the
Nishimori line, i.e. when β = βN.

10.2.2 relevant properties at the nishi-
mori temperature

First of all, let us introduce the quenched internal energy density, de�ned
as u(β) := 1

n E[〈HJ(s)〉β], where we recall that 〈·〉β denotes an average
taken over the Boltzmann distribution (10.6) and E[·] is the average over the
distribution of Equation (10.2). It was shown in [Nis81] that u(βN) takes a
particularly simple expression:Exact expression of

the quenched

internal energy at

the Nishimori

temperature

u(βN) =
1
n

E[〈HJ(s)〉βN ] = −
1
n ∑

(ij)∈E
E
[

Jij〈sisj〉βN

]
= − 1

n ∑
(ij)∈E

E[Jij th(βN Jij)].

The �rst two equalities are true by de�nition. The elegance of the result
of [Nis81] lies in the last relation that identi�es – inside the expectation
E[·] – the term 〈sisj〉βN with th(βN Jij). We recall from Section 2.3.2, for β

su�ciently small, the system is in the paramagnetic phase 〈s〉β = 0 and,
under the Bethe approximation, the relation 〈sisj〉β = th(βJij) is veri�ed
for any underlying βN. This informally introduces a relation between the
Bethe free energy at the paramagnetic point and the Nishimori temperature,
which is at the centre of Claim 10.1.

We introduce the following property of the probability distribution of
Equation (10.2). This relation will be of fundamental use in the following
and, in passing, allows us to rewrite u(βN) as in [Nis81].

Property 10.1. Let f (x) be an arbitrary odd function. Then

E[ f (x) · th(βNx)] = E[ f (x)].

The proof is easily obtained by straightforward calculation. As a conse-
quence of Property 10.1, the quenched internal energy density at the Nishi-
mori temperature takes the simple expression:

u(βN) = −
1
n ∑

(ij)∈E
E[Jij] = −

d̄
2
·E[Jij],

where d̄ denotes the average node degree in the graph G(V , E).
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Secondly, we recall a well celebrated property of the Nishimori tempera-
ture, which states the absence of replica symmetry breaking on the Nishimori
line [NS01; ZK16] or, equivalently, that the RBIM at the Nishimori tempera-
ture is never in the spin glass phase. This result can be visually understood
in Figure 10.2 by noticing that the Nishimori temperature is either in the

E[th2(βN J)] = E[th(βN J)]paramagnetic or ferromagnetic phase. Moreover, exploiting Property 10.1
and the de�nitions of βF, βSG in Equations (10.7, 10.8), on an Erdős-Rényi
graph one �nds that βSG = βN ⇐⇒ βF = βN. Consequently, there exists
a tricritical point where βF = βSG = βN.

Recalling the connection with statistical inference problems, such as infer-
ring σ in Equation (10.4), �rst note that βN is the Bayes optimal inference
temperature in the sense that there exists no other β that can asymptotically
achieve better inference performance and, therefore, if inference cannot be
performed at β = βN, then it is theoretically infeasible. This occurs when
the marginals of Equation (10.4) asymptotically give equal probabilities for
each σi to take either values ±1. In terms of the phase diagram, this cor-
responds to being in the paramagnetic phase, so that βN < βF. In order
for non-trivial reconstruction to be possible, the condition βN < βSG < βF Detectability

thresholdmust be imposed and it corresponds to the detectability threshold of this prob-
lem [Saa+16]. When the condition is met, the system is in the informative

con�guration in which each spin gets oriented towards its planted value σi.
This being said, replacing (or, erroneously estimating) βN by β 6= βN in
Equation (10.4), it may occur that, even though inference is theoretically
possible (as βN < βSG < βF), the estimated labels σ̂ for the mismatched β

are not aligned with the ground truth σ. This never happens at β = βN for
which inference is achieved as soon as theoretically possible.

With this short introduction on the Nishimori temperature at hand, we
now present our main result which relates βN to the spectrum of the non-
backtracking and Bethe-Hessian matrices of the underlying graph G(V , E).

10.3 a relation between βN and
the bethe free energy

This section introduces our main theoretical result, which draws a connec-
tion between the Nishimori temperature and the Bethe-Hessian and non-
backtracking matrices associated to the Hamiltonian (10.5). Our main result,
precisely consists in (i) a claim on the location of the eigenvalues of the
weighed non-backtracking matrix and, as a result of the claim; (ii) an ex-
plicit relation between the underlying Nishimori temperature and a speci�c
eigenvalue of the non-backtracking matrix; (iii) a claim relating the smallest
eigenvalue of the Bethe-Hessian matrix and βN.

Moreover, Section 10.3.3 elaborates an algorithm to estimate βN, which
�nds signi�cant importance in statistical inference problems.
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Figure 10.3: Spectrum of the matrix Bω in the complex plane. The entries Jij are
generated independently according toN (J0, ν2). The edge weights are
de�ned as ωij = th(βJij). Left: dense regime, n = 250, c = 2 log2(n),
J0 = 1, ν = 4, β = 1. Right: sparse regime, n = 3 000, c = 5,
J0 = 1, ν = 1, β = 10. For both plots, the dashed red line corresponds
to cE[th(βJ)], the dash-dotted green line to E[th2(βJ)]/E[th(βJ)],
while the orange continuous line is the circle in the complex plane cen-
tered at the origin and of radius

√
cE[th2(βJ)].

10.3.1 main result
The main mathematical object of our central claim is the weighted non-
backtracking matrix Bω ∈ R|Ed|×|Ed|, de�ned as

Bω = BUω,

where we recall that Ed is the set of directed edges ofG(V , E), B ∈ {0, 1}|Ed|×|Ed|

is the (unweighted) non-backtracking matrix of the graph G(V , E) (De�ni-
tion 1.8), U = diag(ω) and ω ∈ R|Ed| encodes the edge weights.

We now proceed to studying the spectrum of the matrix Bω in the case
where G(V , E) is a Erdős-Rényi graph and its weights ωe are drawn i.i.d.
satisfying |ωe| < 1 with E[ω] > 0 su�ciently large. The interest of this
setting in relation to the RBIM and the Nishimori temperature is to consider
ωe = th(βJe) for βN > βSG and J as per De�nition 10.1. In this particular
case, one of the eigenvalues of Bω has a direct relation with βN.

Our central result concerns the existence of a real isolated eigenvalue in
the spectrum of Bω and is summarized with Claim 10.1.

Claim 10.1. (Spectrum of Bω) Let G(V , E) be a realization of an Erdős-Rényi
random graph with n nodes (n→ ∞) and expected average degree c. For each
undirected edge (ij) ∈ E a weight ωij = ωji ∈ (−1, 1) is assigned indepen-

dently at random. Further assume thatE[ω2
ij]/E[ωij] ≥ 1 andE[ω2

ij]/E2[ωij] <

c. Then, with high probability, the spectrum of Bω can be described as follows:

• there exist only two real eigenvalues in the spectrum of Bω with modulus

greater or equal to one:

λ1 = cE[ω] + on(c) , λ−1 =
E[ω2]

E[ω]
+ on(1). (10.9)
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The eigenvalue λ1 is the largest in modulus in the spectrum of Bω;

• all eigenvalues with non-zero imaginary part have a modulus bounded

by Lω =
√

cE[ω2] + on(
√

c).

Note that Claim 10.1 does not make the assumption that c→ ∞ as n→ ∞,
nor that c = On(1). Extensive simulations indeed concur in suggesting that
the claim holds in both dense and sparse graph regimes. The claim is thus
stated for any average degree, so long that the underlying graph is of the
Erdős-Rényi type. In detail, the technical condition E[ω2

ij]/E2[ωij] < c is
set to enforce that the leading eigenvalue λ1 is greater than the radius of
the bulk spectrum (hence that it is isolated) and that λ−1 is smaller than
the radius of the bulk: a transition occurs at E[ω2

ij]/E2[ωij] = c where
both eigenvalues coincide: λ1 = λ−1. This inequality condition will thus
ensure, when it comes to statistical inference, that non-trivial σ ∈ {±1}n

con�gurations can be theoretically recovered (i.e., that the inference problem
is feasible). As a practical support to Claim 10.1, Figure 10.3 displays the
spectrum of the matrix Bω in both moderately dense (c ∼ log2(n)) and
sparse (c = On(1)) regimes.

The fundamental corollary of Claim 10.1 is that, in the case of present
interest where ωe = th(βJe), from Equation (10.9), the inner eigenvalue
λ−1 of Bω is equal to

λ−1 =
E[th2(βJ)]
E[th(βJ)]

+ on(1).

Exploiting Property 10.1, it follows immediately that, at β = βN, At β = βN the inner

isolated eigenvalue

of B equals 1λ−1 =
β=βN

1 + on(1).

Tuning the value of β until λ−1 = 1 thus provides a method to estimate

βN. The question on how to e�ciently exploit this essential remark from
an algorithmic standpoint will be further discussed in Section 10.3.3. Before
pushing further our main line of deductions, let us provide some arguments
in support of Claim 10.1, treating separately the dense and sparse regimes.

10.3.2 supporting arguments

Dense graphs

We �rst consider a dense graph regime, i.e., when the average degree c goes
to in�nity faster than log(n). This argument is inspired from the proof pro-
vided in [CZ20] for unweighted dense graphs with a community structure.
The proof of [CZ20] can be straightforwardly adapted to the binary case in
which ωe ∈ {±ω}, but does not unfold so directly for ωe ∈ R.
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We recall that the main advantage of the dense regime follows from the
fact that the degree distribution of G(V , E) is almost regular and the Erdős-
Rényi graph is close to a c-regular graph, the analysis of which is easier to
handle. This makes it possible to relate the eigenvalues of Bω to those of
W ∈ Rn×n, de�ned as Wij = ωij if (ij) ∈ E and zero otherwise. The idea is
to create a sequence of matrices M(g) ∈ R2n×2n (one for each eigenvector
g of Bω), in the spirit of a proof proposed by Bass of the celebrated Ihara-
Bass formula [HST06], and to show that all the eigenvalues of M(g) can be

On dense

Erdős-Rényi graphs

‖D− cIn‖ = on(c)

approximated, in the large n limit, by the eigenvalues of a common matrix
M0 independent of g, so long that g is an eigenvector corresponding to an
eigenvalue λ of Bω for which |λ| ≥ 1. It is the precise study of the spectrum
of the limiting M0 which induces the results of Claim 10.1.

More speci�cally, let g ∈ C|Ed| be an eigenvector of Bω with eigenvalue
λ, satisfying |λ| ≥ 1 and let ω ∈ R|Ed| be the vector containing the weights
of the edges of G(V , E) (and recall that ωij = ωji). Then de�ne the vectors
ψ(g), ψ̃(g) ∈ Cn as

ψi(g) = ∑
j∈∂i

ωijgij , ψ̃i(g) = ∑
j∈∂i

ω2
ijgji (10.10)

and F(g) ∈ Cn×n be any matrix satisfying[
F(g)ψ(g)

]
i = ∑

j∈∂i
ω3

ijgij. (10.11)

We now wish to relate the quantities ψ(g), ψ̃(g), F(g) to the eigenvalues
of Bω. In particular,

λψi(g) = ψi(Bωg) = ∑
j∈∂i

ωij ∑
(k`)

δjk(1− δi`)ωkl gk`

= ∑
j∈∂i

ωij

[
∑
l∈∂j

ωj`gj` −ωjigji

]
= [Wψ(g)]i − ψ̃i(g)

and, similarly,

λψ̃i(g) = ψ̃i(Bωg) = ∑
j∈∂i

ω2
ij ∑
(k`)

δik(1− δj`)ωk`gk`

= ∑
j∈∂i

ω2
ij

[
∑
`∈∂i

ωi`gi` −ωijgij

]
= [DWψ(g)]i − [F(g)ψ(g)]i ,

where DW ∈ Rn×n is the diagonal matrix with [DW ]ii = ∑j∈∂i ω2
ij. Thus,

the eigenvalue λ is also an eigenvalue of the matrix

M(g) =

(
W −In

DW − F(g) 0

)
. (10.12)

The main di�culty of the analysis is of course introduced by the matrix
F(g) which is di�erent for each eigenvector of Bω associated to |λ| > 1. In
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the binary case in which Wij ∈ {±ω} for all (ij) ∈ E , this term simpli�es:
combining Equations (10.10) and (10.11), we get F(g)ψ = ω2ψ and F(g)
thus simpli�es for all g into F(g) = ω2 In; this allows for a straightforward
adaptation of the proof of [CZ20]. The non-binary case is, however, more
involved, but the term

(
DW − F(g)

)
ψ is still dominated by DW : F is negligible with

respect to DW∣∣∣∣ [F(g)ψ(g)]i
ψi(g)

∣∣∣∣ =
∣∣∣∣∣∑j∈∂i ω3

ijgij

∑j∈∂i ωijgij

∣∣∣∣∣ = on(c).

For the last equality, we exploited the fact that ωij and ω3
ij are both bounded

in (−1, 1) and have the same sign.4 Consequently, F(g) can be regarded as
a small perturbation of DW . Further exploiting the concentration of the de-
grees, one may thus write∥∥∥(DW − F(g)

)
− cE[ω2]In

∥∥∥ = on(c).

The eigenvalues of M(g) can therefore be approximated by those of

M0 =

(
W −In

cE[ω2]In 0

)
. (10.13)

The spectrum of M0 is trivially related to the spectrum of W. Letting
{λi(W)}i=1,...,n be the eigenvalues of W and {λ0,i}i=±1,...,±n those of M0,
by the block determinant formula [Sil00, Section 5], it comes that

λ0,±i =
λi(W)±

√
λi(W)2 − 4cE[ω2]

2
.

In particular, it unfolds that

λ2
i (W) ≥ 4cE[ω2] =⇒ λ0,−i =

cE[ω2]

λ0,i
≡ L2

ω

λ0,i
(10.14)

λ2
i (W) < 4cE[ω2] =⇒ |λ0,±i| =

√
cE[ω2] ≡ Lω. (10.15)

Applying successively Wigner’s semi-circle theorem [Wig58] and Bauer-
Fike’s theorem [BF60], we thus have that

λ1(W) = cE[ω] + on(
√

c) (10.16)

|λi(W)|i≥2 ≤
√

cE[ω2] + on(
√

c). (10.17)

Combining (10.14, 10.15) with (10.17, 10.16), along with the fact that the
eigenvalues {λ0,±i}i=1,...,n are a close approximation to the eigenvalues of
Bω with modulus greater than one, we obtain the formulation of Claim 10.1.
Figure 10.4 compares the spectra of the matrices M(g) and M0, which should
be themselves compared to the left display in Figure 10.3.

4 This step is reasonable but non-rigorous, the main theoretical di�culty arising from the
dependence between ωij and gij.
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Figure 10.4: Left: spectrum of the matrix M(g) de�ned in Equation (10.12) with g,
one of the eigenvectors of Bω attached to a complex eigenvalue. The
expression of F(g) used in this simulation can be found in Appendix A
of [DCT21] Right: Spectrum of M0, de�ned in Equation (10.13). The
graph considered is the same for the two matrices, with n = 1 500,
c = log2(n). The matrix W = th(βJ), with β = 1 and the entries
Jij are i.i.d. normal variable with J0 = 1 and ν = 3. The red dot-
ted line is at cE[th(βJ)], the green dash-dotted line is the position of
E[th2(βJ)]/E[th(βJ)], while the orange solid line is the circle in the
complex plane of radius

√
cE[th2(βJ)].

This technical argument provides important intuitions on the spectrum of
Bω: (i) the leading eigenvalue of Bω (the largest in modulus) is determined
by the expectation of the entries of W; (ii) the radius of the bulk of Bω is de-
termined by the expectation of the squared entries of W; (iii) all eigenvalues
of Bω with modulus greater than one come in pairs: they are complex con-
jugates if their imaginary part is non-zero or harmonic conjugate if they are
real. This last observation justi�es the existence of a real isolated eigenvalue
inside the bulk of Bω.

As a downside, the setting considered in this section is, somehow, too
simplistic. The analysis allowed us to neglect the term F(g), which plays
the role of the Onsager reaction term [MPV87] which does not appear in
the naïve mean-�eld approximation but plays a crucial role in the Bethe
approximation. The fact that F(g) can be neglected thus indicates that the
regime under consideration is somehow too simple, the spectral behavior of
Bω being fully determined by W. Consequently, we next discuss the far more
interesting sparse regime in which the reaction term plays a fundamental
role. In the sparse regime, the structure of the spectrum of the matrix Bω is
essentially preserved, as well as the fact that all its eigenvalues all come in
real harmonic or complex conjugate pairs.

Sparse graphs

We recall that the Bethe approximation is asymptotically exact on locally
tree-like graphs, such as sparse Erdős-Rényi random graphs. In this case,
the spectrum of W is no longer formed by an isolated, real eigenvalue and a
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bulk of eigenvalues close to each other that follow the semi-circle law, as it
happens in the dense regime discussed in the previous paragraph.

The non-backtracking matrix Bω, instead, essentially preserves the same
spectral structure as in the dense regime, in which the bulk eigenvalues are
bounded by a circle in the complex plane, as shown in Figure 10.3 and con-
�rmed by Theorem 3.4 of [SM20] in which, however, the authors do not men-
tion the existence of inner real eigenvalues in the spectrum of Bω. Yet, the
position of the leading eigenvalue of Bω and the radius of its bulk spectrum
are the same as in the dense graph case. We then conjecture, supported by
extensive simulations, that also the inner isolated eigenvalue has the same
position as in the dense regime, given by the square radius of the bulk, di-
vided by the leading eigenvalue of Bω.

Returning to the implications of Claim 10.1 of immediate interest, recall
that the claim makes it possible to relate the Nishimori temperature to the
speci�c eigenvalue λ−1 of the matrix Bω. From a numerical standpoint though,
λ−1 is not easily accessible since λ−1 is smaller in modulus than most of the
complex eigenvalues of Bω, while not being the smallest in modulus (see Fig-
ure 10.3), one needs to compute all the bulk eigenvalues of Bω in order to ac-
cess λ−1: this comes at an impractical computational cost of On((cn)3) with
state of the art methods. We next show that, as a consequence of Claim 10.1,
the weighted Bethe-Hessian matrix (De�nition 2.2) can be e�ciently used
to estimate βN in the RBIM with a computational cost scaling as On(cn).

10.3.3 efficient estimation of βN

This section elaborates on our �nal relation between the Bethe-Hessian ma-
trix and the Nishimori temperature, as well as on how the respective spectra
can be related to the phase diagram of Figure 10.2.

First of all, let us recall the explicit expression of the weighted Bethe-
Hessian Hβ,J that will be considered in the following

The weighted

Bethe-Hessian

matrix

(
Hβ,J

)
ij = δij

(
1 + ∑

k∈∂i

th2(βJik)

1− th2(βJik)

)
−

th(βJij)

1− th2(βJij)
. (10.18)

We recall from Theorem 2.1 that whenever λ = 1 is an eigenvalue of Bω for
ωe = th(βJe), then det[Hβ,J ] = 0. In order to best understand how Hβ,J
can be used to e�ciently estimate βN, let us consider the behavior of its
eigenvalues as a function of β. First of all, at su�ciently high temperature
(small β), for all βN the system is in the paramagnetic phase, for which m =

0n is a minimum of the Bethe free energy. Consequently Hβ,J is positive
de�nite, while all eigenvalues of Bω are smaller than one.

Consider now βN to be su�ciently large, so that the system undergoes to
a paramagnetic-ferromagnetic phase transition (see Figure 10.2). For β = βF

de�ned as cE[th(βF J)] = 1, the leading eigenvalue of Bω is (asymptoti-
cally) equal to 1 and one of the eigenvalues of HβF,J is equal to zero. This
eigenvalue is necessarily the smallest.
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Figure 10.5: First row: spectrum of the matrix Bω in the complex plane for dif-
ferent values of β; Second row: histogram of the eigenvalues of Hβ,J
(zoomed in on the smallest eigenvalues) for di�erent values of β. First
column: β = 0.5βF, paramagnetic phase; Second column: β =
βF paramagnetic-ferromagnetic transition; Third column: β = βSG
paramagnetic-spin glass phase transition; Fourth column: β = βN,
Nishimori temperature. For all matrices, the same graph was used with
n = 1 000, c = 10. The weights of the edges are ωij = th(βJij) for the
di�erent values of β just described and the Jij are drawn independently
from a Gaussian distribution N (J0, ν), with J0 = 1 and ν = 1.5. The
orange lines vertical line is at x = 1, while the black vertical line in the
second row is at x = 0.

For small values of βN, the system undergoes the paramagnetic-spin glass

phase transition (see Figure 10.2) at the temperature β = βSG de�ned so that
cE[th2(βSG J)] = 1. Here, the radius of the bulk of Bω is (asymptotically)
equal to one and the bulk of HβSG,J is (asymptotically) equal to zero.

Finally, further decreasing the temperature, at β = βN de�ned by the
relation E[th2(βN J)] = E[th(βN J)], the eigenvalue λ−1 is equal to one
and the smallest eigenvalue of HβN,J reaches zero for the second time. In
Figure 10.5 we show the spectra of the matrices Bω and Hβ,J at β < βF,
β = βF, βSG, βN that con�rm the relation between the spectra of these two
matrices and the phase diagram.

With these fundamental observations at hand, we now show how one
can e�ciently estimate βN, exploiting the smallest eigenvalue of Hβ,J . The
proposed estimator of βN reads

An e�cient estimate

for βN
β̂N = max

β

{
β : λ↑1(Hβ,J) = 0

}
,

Under this de�nition, not only does β̂N provide a consistent estimate of βN

for J distributed as De�nition 10.1, but it also provides the “best guess” of
an hypothetically corresponding βN for matrices J which would follow a
di�erent distribution. Indeed, β̂N has the advantage of always being de�ned,
even for arbitrary matrices J, while having a clear interpretation for the
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Figure 10.6: Left: computation of β̂N for di�erent values of βN. The blue dots rep-
resent the ratio between β̂N, computed with Algorithm 10.1 and the
analytical value of βN. The purple diamonds are the value of βSG/βN,
while the orange line is at y = 1. For these plots, n = 10 000 and c = 5.
The weights of the non-zero entries of J are distributed i.i.d. according
to N (J0, ν2) for J0 ranging from J0 = 0.5 to J0 = 4 and ν = 3.5. Av-
erages are taken over ten samples. Right: behavior of the two smallest
eigenvalues of Hβ,J as a function of β. The solid line indicates the small-
est eigenvalue, while the dotted line is the second smallest. The vertical
lines are set at βF < βSG < βN. For this simulation, n = 30 000 and
c = 10. The weights of the matrix J are distributed i.i.d. according to a
N (J0, ν2) with J0 = 1 and ν = 1.5.

class of matrices that fall under De�nition 10.1. This de�nition is particularly
reminiscent of Algorithm 5.1 for CD.

The equation λ↑1(Hβ,J) = 0 has two solutions for β ≈ βF and β ≈ βN

with βN > βF, justifying our proposed estimator. As a visual support, the
right plot of Figure 10.6 shows λ↑1,2(Hβ,J) as a function of β.

The basic idea of the proposed algorithm to compute β̂N precisely con-
sists in starting from β = βSG to then �nd the value of β > βSG for
which λ↑1(Hβ,J) = 0. Following this argument, we propose an iterative
algorithm based on Courant-Fischer theorem (similar to Algorithm 5.1) to
compute β̂N. The output of Algorithm 10.1 is depicted in the left display of
Figure 10.6. Note in particular that, as long as βSG < βN, i.e., as long as
E[th2(βJij)]/E2[th(βJij)] < c, the value of β̂N is a good estimate of βN.
When the condition is instead not met, β̂N simply coincides with βSG. The
numerical advantage of exploiting the Bethe-Hessian matrix is decisive. First
Hβ,J is symmetric and of size n× n regardless of the average node degree. Most
importantly, the only eigenvalue of Hβ,J that needs be computed is the one
of smallest amplitude, so that β̂N can be estimated at a On(nc) operations.

With these theoretical results laid out, we now move back to our initial
problem of performing correlation clustering on high dimensional vectors
and see how Claim 10.1 has a practical interest to accomplish this task.
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Algorithm 10.1 : Compute_β̂N

Input : Weighted adjacency matrix of a graph J ∈ Rn×n, precision
error ε ∈ R+.

Output : Value of β̂N ∈ R+.
1 begin

2 Compute c, the average degree of the underlying unweighted
graph: c = 1

n ∑i ∑j I(Jij 6= 0) ;
3 Compute β̂SG by solving cE[th2(β̂SG Jij)] = 1;
4 Set t = 1 and βt ← β̂SG ;
5 Initialize δ← +∞;
6 while δ > ε do

7 Compute Hβt,J (Equation (10.18)) ;
8 Compute λ↑1(Hβt,J) and its associated eigenvector xt ;
9 De�ne the function ft(β′) = xT

t Hβ′,J xt, for β′ ∈ R+ ;
10 Compute βt+1 by solving ft(βt+1) = 0 ;
11 Update δ← |λ↑1(Hβt,J)| ;
12 Increment t← t + 1 ;
13 end

14 end

15 return βt−1.

10.4 algorithm and performance
comparison

10.4.1 relaxation of the bayes optimal
inference

In Section 10.1.2 we showed that the problem of Bayesian inference in a two
class setting given a matrix J̃ as in Equation (10.3) can be easily mapped to
the RBIM that we extensively studied in Section 10.3. This mapping is induced
by a simple gauge transformation, that enables the use of Algorithm 10.1 to
estimate βN directly from J̃. Recall that J̃ij = Jijσiσj, where σi ∈ {±1}
encodes the label information of node i. Let x ∈ Rn be an eigenvector of
Hβ, J̃ with eigenvalue λ and let y have entries yi = xiσi. Then

λyi = λxiσi = σi ∑
j

(
Hβ, J̃

)
ij

xj = σi ∑
j

(
Hβ,J

)
ij σiσjxj =

(
Hβ,Jy

)
i

so that λ is an eigenvalue of Hβ,J with eigenvector y. Consequently, the
smallest eigenvalue of HβN, J̃ is asymptotically close to zero and Algorithm 10.1
can indeed be used to estimate βN.
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Algorithm 10.2 : The Nishimori-Bethe relation for sparse SC

Input : Weighted adjacency matrix of a graph J̃ ∈ Rn×n, precision
error ε ∈ R.

Output : Value of β̂N ∈ R+, estimated label vector σ̂ ∈ {−1, 1}n.
1 begin

2 Shift the non-zero J̃ij as: J̃ij ← J̃ij − 1
2|E |1

T
n J̃1n ;

3 Compute β̂N ← Compute_β̂N (Algorithm 10.1) ;
4 Compute Hβ̂N, J̃ (Equation (10.18)) ;
5 Compute x← the eigenvector associated to λ↑1(Hβ̂N, J̃) ;
6 Estimate σ̂ as the output of 2-class k-means on the entries of x ;
7 end

8 return βt, σ̂.

From this trivial computation, it also appears that y is expected to be
strongly related to the vector σ. In fact, exploiting Property 10.1 of the Bethe-
Hessian matrix associated to J, we can write at β = βN:

E
[
HβN,J

]
= In + E

[
th(βJij)

1− th2(βJij)

]
(D− A) .

From a straightforward calculation (see Proposition 1 of [VL07]), the vec-
tor 1n is the eigenvector of E[HβN,J ] associated to its eigenvalue of smallest
amplitude. As a consequence, from the relation between x and y (or equiva-
lently between J̃ and J), the vector σ is the eigenvector of E[HβN , J̃ ] associ-
ated with its eigenvalue of smallest amplitude. Consequently, the eigenvec-
tor with zero eigenvalue of HβN, J̃ is a close approximation of σ.

This conclusion immediately translates into Algorithm 10.2, a numerical
method to infer the genuine node classi�cation σ. The performance of Al-
gorithm 10.2 is tested on synthetic datasets and evaluated against two com-
monly deployed SC techniques that we here brie�y review.

A very classical spectral clustering method in weighted graphs exploits
the weighted Laplacian matrix L = D̄ − J̃, where D̄ = diag(| J̃|1n). As
shown in [VL07; Kun+10], the eigenvector attached to the smallest eigen-
value of L provides a (discrete to continuous) relaxed solution of the NP-
hard optimization signed ratio-cut graph clustering problem which attempts Competing spectral

methodsto maximize the number of edges with positive weights connecting nodes
in the same community, while minimizing the number of edges with nega-
tive weights connecting nodes in opposite communities. The relation of this
method with the SC algorithm of [Fie73] for CD should be evident and similar
comments to the ones made in Chapter 8 are valid in this context as well.

The second method5 we are to consider instead performs SC on the leading
eigenvectors of the matrix J̃. This is a very popular strategy to perform SC in

5 Note that in the context of correlation clustering and for the choice K = 1
demb

ZZT , this is
nothing but the principal component analysis.
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Figure 10.7: Overlap performance as a function of βN/βSG and three di�erent val-
ues of c. For βN < βSG inference is asymptotically unfeasible. Two
classes of equal size are considered and the entries of J are generated
independently according to a Gaussian with mean J0σiσj. In the exam-
ples, n = 30 000 and averages are over 10 samples.

weighted graphs and, as we explained in Chapter 8, it can be interpreted as
a naïve mean �eld (NMF) (hence suboptimal) version of Algorithm 10.2. Also
in this case, the comments made in Chapter 8 are valid also in this setting.

Figure 10.7 shows that, while at su�ciently large degree, Algorithm 10.2
and NMF perform essentially equally (as expected), the same cannot be said
for a low average degree where the NMF fails severely. Furthermore, also
in the weighted case, the Laplacian matrix displays an algorithmic phase
transition which is well beyond the one achieved by Algorithm 10.2 and
it is hence unsuited for SC in di�cult settings. Moreover, note that Algo-
rithm 10.2 achieves a positive overlap as soon as βN > βSG, i.e. it reaches
the theoretical detectability threshold and performs competitively with the
Bayes optimal solution obtained by belief propagation (BP) algorithm. Due
to its computational complexity, for c = 50, instead of BP we run the TAP
algorithm [OS01] that is a convenient approximation of BP to adopt in the
presence of a large average degree.

Remark 10.1. (The “spin glass” Bethe-Hessian) The use of the Bethe-Hessian

matrix for SC from sparse pairwise measurements was already proposed in

[Saa+16] that studied a similar framework to the one considered in this chap-

ter. In [Saa+16] the temperature β = βSG is proposed to perform non-trivial

clustering as soon as theoretically possible, with a clear reference to the work

of [SKZ14] for community detection (CD).

The value βSG, unlike βN, can be easily estimated from the matrix J̃ solving
cE[th2(βSG J̃ijσiσj)] = cE[th2(βSG J̃ij)] = 1. However, unlike the algorithm
of [Saa+16], Algorithm 10.2 represents an optimal relaxation of the Bayes op-

timal solution and it is expected to yield better performances.

The main di�erence between the spin glass Bethe-Hessian and the Nishi-
mori Bethe-Hessian, however, is observed when the underlying graph has a

heterogeneous degree distribution (see Figure 7 of [DCT21]) and, in the pres-

ence of a Erdős-Rényi graph, the performances of both algorithms are observed

to be similar, with a slight computational advantage for HβSG, J̃ .
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Figure 10.8: Left plot: example of random generations of the input GAN images.
Right plots: overlap classi�cation performance of 40 000 GAN images,
as a function of the expected average underlying graph degree c. Here,
we consider Kij({z}) = 1

dfeat
zT

i zj and we take either κ = dfeat: all
features of the images are kept, or κ = 20: on average, only

√
κ/dfeat

features (dfeat = 512) are used. Averages are taken over 10 realizations.

10.4.2 real data clustering
We complete the chapter by a robustness test of our proposed algorithm
under a real-world machine learning classi�cation problem. Speci�cally, we
consider a sparse (and thus cost-e�cient) version of the problem of corre-
lation clustering such as met in image classi�cation and show how Algo-
rithm 10.2 can be adopted to accomplish this task with higher performance
than with competing spectral methods of the literature.

Given the input vectors stored in the columns of the matrix Z ∈ Rn×dfeat ,
we recall from Equation (10.3) that the J̃ is obtained applying a i.i.d. symmet-
ric Bernoulli mask with parameter c/n to the matrix K = 1

dfeat
Z̃Z̃T , where

Z̃ ∈ Rn×dfeat is obtain discarding random elements of Z, keeping them with
probability

√
κ/dfeat. We thus practically tested Algorithm 10.2 against the

naïve mean �eld approach which in this setting happens to coincide with the
algorithm proposed in [Zar+20] and against the weighted Laplacian matrix.

As a telling modern data classi�cation context, we chose to cluster two
classes of high-resolution realistic images randomly produced by genera-

tive adversarial networks (GANs) [BDS18]; the interest of using GAN images
rather than real images lies in that they can be produced “on-the-�y” and in
arbitrary numbers. Speci�cally, we considered n = 40 000 images divided
into two groups of equal size, representing collie dogs and tabby cats. A rep-
resentative example of the input images generated by the GAN is given in
Figure 10.8. For each of these images we extracted discriminating features
using an o�-the-shelf convolutional neural network (VGG) which produces
p = 512-dimensional feature vectors zi.6 We then measured the overlap per-
formance as a function of the average node degree c of the ensuing graph
and for di�erent values of κ. The results are reported in Figure 10.8 which
strikingly evidences that Algorithm 10.2 can achieve almost perfect recon-

6 The p = 512 �gure is on the low-hand of typical image vector representations: this number
may rise to 4k or even to 20k when much more than two classes of images are to be classi�ed.
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struction already for c = 5 when the feature vectors zi are not sparsi�ed
(κ = p): so, in clearer terms, out of the 40k× 40k = 1.6 · 109 correlations
needed to evaluate the full K({z}) matrix, only ≈ 6 × 40k = 2.4 · 105

is enough to achieve almost optimal performance, thus corresponding to a
striking 104-fold gain in complexity for a rather marginal performance loss.

10.5 conclusion
The central contribution of this chapter is of a theoretical nature and aims at
introducing an explicit relation between the Bethe-Hessian matrix and the
Nishimori temperature. Yet, beyond this statistical physics endeavour, the
result �nds direct applications to Bayesian inference. Speci�cally, one may
anticipate an important impact in more involved applications than those
considered in this article, such as in restricted Boltzmann machines (RBM)
whose goal is to learn a generative model from a set of examples [AHS85]:
the Bethe approximation has recently been adopted to study the RBM from
a Bayesian perspective [HT16] so that one may envision that the explicit re-
lation between the Bethe free energy and the Nishimori temperature would
lead to a better understanding of state-of-the-art algorithms.

On the side of complexity reduction, exploiting high levels of sparsi�ca-
tion of data measurements, we showed that our proposed algorithm is capa-
ble of accomplishing high quality unsupervised classi�cation on very large
datasets. This result is all the more fundamental that future machine learn-
ing data treatment will call for increasingly larger datasets which cannot
be possibly manually labelled and for which unsupervised approaches must
be adopted. As a downside though, the generative model we considered for
the data a�nity (kernel) matrix takes the strong assumption that its entries
are drawn from the same probability distribution and only the average (and
not the variance, or the distribution itself) embeds information on the node
labels. This setting might be too simplistic on generic real data that would
require more realistic probability distributions for the generative model of
the kernel matrix to be considered.

Possibly most importantly, we worked here under the assumptions that
the edges maintained in the sparsi�ed graph are drawn independently at
random. When dealing with actual kernel matrices, this cost-e�cient mea-
sure is quite suboptimal: in [LCM20], a more e�cient sparsi�cation proce-
dure is used which maintains the entries of K({z}) of largest amplitude.
In [LCM20], this comes at the cost of computing all the entries of K({z})
but, surely, a more e�cient nearest neighbors-type procedure could be im-
plemented as a good performance-complexity compromise [ML09]. Yet, in
this setting, although stronger sparsity levels can surely be achieved for the
same performance, the key independence property of the entries of K({z})
which we exploited here can no longer be assumed, so that one needs to
carefully handle the hard problem of dependencies.



CONCLUS ION

In this manuscript we investigated spectral clustering (SC) techniques adapted
(but not necessarily limited) to sparse graphs with applications to commu-

nity detection (CD) on both static and dynamical graphs, as well as corre-
lation clustering of high dimensional vectors. The �le rouge connecting all
our main results revolves around the claim of the existence of isolated infor-
mative eigenvalues inside the bulk of the non-backtracking matrix B. Their
location is deeply related with the meta-parameters of the generative model
of B and the corresponding eigenvectors can be used to obtain a relaxation
of the Bayes optimal solution. Furthermore, exploiting its relation with the
non-backtracking matrix, we provided cost e�cient SC algorithms based on
the Bethe-Hessian matrix, extensively tested on real and synthetic datasets.

A profound result of our proposed algorithms relies in their ability to “self-
adapt” to the hardness of the clustering problem, bridging existing results of
the literature which considered either hard or trivial, either sparse or dense
settings. Supported by extensive numerical simulations, we showed that our
proposed algorithms often outperform the state-of-the-art “non-adaptive”
competing ones.

If on the one hand our work strongly motivates the adoption of well-
parametrized Bethe-Hessian matrix for SC, on the other hand it also poses
several questions, both on an algorithmic as well as theoretical levels.

limitations and open qestions

implementation limitations
This manuscript gives a great deal of attention to the problem of design-
ing e�cient as well as robust algorithms that can be run on arbitrary input
graphs. The empirical experience led us to spot some practical limitations
that were not foreseen when we designed our algorithms in the �rst place.
This is particularly the case of Algorithm 7.1 for CD in static graphs.

We recall that Algorithm 7.1 has to compute a sequence of values {ζp}p=1,...,k

satisfying λ↑p(Hζp) = 0. To do so, we designed an algorithm that starts from
a value r̄ ≥ ζk to then estimate successively the largest (ζk) and arriving to
the smallest (ζ1). The proposed Algorithm 7.3 computes the ζp exploiting a
relation derived from the Courant-Fischer theorem and does not make any
assumption on the function λ↑p(Hr). The practical limitations of this imple-
mentation are brie�y listed as follows.
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1. Suppose that for the input graph G(V , E) , ζk ≈ 1 and the average de-
gree is su�ciently large. This corresponds to an easy clustering setting
(due to ζk ≈ 1 hypothesis) in which the most commonly adopted SC
would likely output a very accurate result. In this case, Algorithm 7.3
has to start from a rather large value r̄ (due to the large average degree)
and potentially needs several iterations to converge. Consequently, al-
though the performance of Algorithm 7.1 for this easy task is still ex-
pected to be very high, its computational time will be signi�cantly
higher than the one of competing algorithms.

2. The value r̄ =
√

λ
↓|·|
1 (B) (adopted in Algorithm 7.2) is only presumed

to be a good approximation of

r̄ = arg max
r
|{i : λi(Hr) < 0}| .

Algorithm 7.3 requires r̄ as an input and the mismatch between its ac-
tual and estimated values may potentially lead to discard informative
eigenvectors.

3. The number of communities k in a real social graph may grow with
its size due to the typical hierarchical structure of complex systems
[Sim91]. Consequently, on large graphs, very large k may be found. To
provide a practical example, the LiveJournal social network has
n = 34 681 189 nodes and k = 287 512 communities [YL15]. The
computational complexity of Algorithm 7.1 scales as O(nck3), making
it unpractical1 for a large k like the one of the LiveJournal dataset.

We envision that all three problems listed above can be easily solved de-
signing an algorithm that estimates the ζp’s from the smallest (ζ1 = 1) to
the largest. This strategy obviously solves the problem raised in (1). Also
point (2) could be easily addressed, since k can be estimated as the largest
p for which ζp is de�ned and has not to be speci�ed before computing the
ζp’s. Concerning point (3), instead, one can envision to adopt a strategy ac-
cording to which, �rst the graph is partitioned in k1 sub-graphs (computing
ζ1, . . . , ζk1 ), then on each sub-graph so obtained the process is re-iterated at
lower scales until no communities can be detected. For a hierarchical struc-
ture, it is reasonable to assume k1 ∼ log(k), hence solving also problem (3).
Unfortunately, we still did not manage to de�ne an algorithm such as Al-
gorithm 7.3 in which the ζp’s are successively computed from the smallest
one, without making any assumption on λ↑p(Hr). There lies one of the main
improvements of our implementation.

Concerning our proposed algorithms for dynamic CD, on top of the com-
ments detailed in Section 9.5, the main technical issue is certainly related to
point (2) of the list above: our result is generally well posed for graphs gen-
erated from the dynamical degree corrected stochastic block model (DDCSBM),

1 It is worth to remark that, for this particular example, the O(nk2) complexity of typical SC
algorithms may also be prohibitive. Furthermore, making an embedding in≈ 105 dimensions
is unsuited for k-means, due to the curse of dimensionality.



conclusion 185

but for general graphs, the value of k may be potentially underestimated.
The main weakness of Algorithm 10.2 for correlation clustering, instead, re-
sides in point (1): the entries of Hβ,J grow exponentially with β and in the
easy clustering regime (βN → ∞) this causes convergence problems. Un-
like CD, however, this is not solely a matter of speed of convergence, but
also of numerical stability. This could be improved adopting a method like
the one proposed in [CD00] to compute the eigenvalues and eigenvectors of
matrices with di�erent orders of magnitude.

the k-means step
All the results of this manuscript concerned only a speci�c one of the two
steps of SC, that is generating a signi�cant small dimensional node embed-
ding. The whole point of SC, however, is to assign labels and the second step
of SC has been systematically performed with the use of k-means algorithm.
The �rst question that naturally arises is whether or not this is an optimal
choice. We believe that the answer is unlikely to be positive and that more
e�cient algorithms can be considered in place of k-means.

One of the main alternatives to k-means is provided by density based clus-
tering algorithms such as [Est+96; Ank+99]. These methods are likely more
robust than k-means to a asymmetrical embedding such as the one that may
appear in Algorithm 7.1 for general graphs. It has to be noted, however, that
we experimentally veri�ed that these methods (that typically do not require
k as an input) fail to achieve the detectability threshold on synthetic graphs
because, close to the transition, there is no region in space in which the den-
sity of points is su�ciently low to draw a boundary.

A theoretically more solid alternative (yet less �exible to the implemen-
tation on arbitrary graphs) consists in studying the probability distribution
of the points in the embedding space and run expectation maximization al-
gorithm to perform clustering [DLR77]. Actually, k-means consists in solv-
ing exactly this problem, assuming that the probability distributions are
isotropic Gaussian with the same variance. It has to be noted, however, that
to properly address expectation maximization for the problem considered,
one needs to have a full theoretical understanding of the eigenvectors of the
Bethe-Hessian matrix. To the best of our knowledge, the tools to rigorously
address this question in the sparse regime are still lacking.

On a more pragmatical side, Chapters 5, 7 evidenced the striking e�ciency
of the projection of the embedding vectors on a unitary hypersphere prior
to the k-means step. This technique is likely to be suboptimal (at least for
DCSBM-generated graphs), but we acknowledge that it provides very good
results at a moderate computational cost. This evidence, however, needs a
thorough theoretical justi�cation, that, in the sparse regime, is still lacking.
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Figure 1: Overlap performance as a function of the detection problem on DCSBM-
generated graphs comparing the normalization technique adopted prior
to the k-means step. The green squares (“projection”) are the normaliza-
tion of the rows of X, while the green dots (“division”) the division of
the entries of the columns of X by the entries of its �rst column. Left:
overlap obtained by Algorithm 4.1 for M = A, n = 10 000, k = 2,
c = 200, θi ∼ [U (3, 10)]4. Right: overlap obtained by Algorithm 4.1 for
M = Lsym

τ and τ equal to the average degree, n = 25 000, k = 2, c = 5,
θi ∼ [U (3, 10)]4. Both simulations are averaged over 10 realizations.

To motivate this assertion, we recall that the projection step is justi�ed
when the entries of the embedding matrix X ∈ Rn×k can be written as

Xi,• = [ fig
(1)
`i

, fig
(2)
`i

, . . . , fig
(k)
`i
].

In practice, the entries of Xi,• are decomposed in two contributions: one
that remains constant along the row but that is di�erent for each node, fi;
one that takes a di�erent value for each column of X, but depends on i only
through its label `i and is therefore capable to group together nodes into
communities. Normalizing ‖Xi,•‖ = 1, we see that the i-dependent compo-
nent of Xi,• is removed, producing a high quality embedding which depends
solely on the node labels. An alternative strategy to preprocess X however
exists and it consists in de�ning X̃ as follows

X̃•,i =
X•,i
X•,1

. (1)

Although these two normalization procedures may seem very similar, in
practice they perform very di�erently. In particular, the left plot of Figure 1
shows the performance of clustering on the leading eigenvectors A on dense
DCSBM graphs and for the two normalization strategies. Note that the nor-
malization obtained from Equation (1) precisely corresponds to the SCORE

algorithm of [Jin+15]. Figure 1 shows that the two methods perform equally
well, thus fully justifying the projection step in this case.

On the right, the same plot is proposed in the sparse regime for Lsym
τ =

D−1/2
τ AD−1/2

τ for τ equal the average degree. In this case, adopting the pro-
jection on the hypersphere as a normalization corresponds to the algorithm
of [QR13], which we extensively commented in Chapter 6. In this case, the
two plots are in evident disagreement, showing that the high performance
obtained from the projection step goes beyond its theoretical justi�cation.
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Also in this case, to formally address this question, one would need to have
clear results on the eigenvectors of the considered matrix to then study the
convergence of k-means on the obtained embedding.

To conclude, our results address the problem of designing a proper node
embedding with a SC algorithm. Nonetheless, SC requires also to be capa-
ble of extracting the information from the embedding and considering the
problem as a whole certainly deserves further investigations.

theoretical considerations
The work presented in this manuscript raises some important questions also
from a theoretical standpoint. Perhaps the most relevant result concerns an
explicit relation between the spectral properties of the Bethe-Hessian matrix
and the Nishimori temperature as detailed in Chapter 10. It has to be noted
that, although the mapping between the Ising model and Bayesian inference
was fully rigorous only in Chapter 10, the results of both dynamic and static
CD are closely related.

From a statistical physics perspective, a question that certainly deserves
further exploration concerns the deep meaning and implications of the Bethe-
Nishimori relation. From our conjecture, it appears that the paramagnetic
point m̂ = 0n is not a minimum of the Bethe free energy for βF < β < βN,
but it is a local minimum for β > βN, with the Nishimori temperature
denoting the transition between these two conditions. At low temperature,
m̂ = 0n corresponds to a local minimum of the free energy hence to a con-
�guration that is metastable. This result should be related to existing exper-
imental and numerical observations of the random bond Ising model (RBIM).

On top of this, the Nishimori-Bethe relation is formulated only for Erdős-
Rényi (ER) random graphs and for Ising variables. The properties of the Nishi-
mori temperature can however be extended to a larger class of models than
the RBIM [Geo+85] and to graphs not generated from the ER model. The natu-
ral line of exploration in this direction is hence to study the relation between
the Bethe free energy and the Nishimori temperature for di�erent classes of
graphs and Hamiltonians.

Moreover, beyond the interest in statistical physics of our results, we also
unveiled some previously unseen behavior of the non-backtracking matrix
eigenvalues, predicting the existence of isolated eigenvalues inside its bulk.
From an algebraic standpoint, the emergence of these eigenvalues is well
understood in quasi-regular graphs [CZ20], but we believe that this expla-
nation does not capture the depth and complexity of the problem. Further
mathematical tools would then be needed to formally address this question
and study these eigenvalues and their related eigenvectors.



outlook and perspectives
Let us now look ahead, proposing some further lines of explorations and
applications of our results.

Concerning the problem of CD we detailed extensively in Chapters 7, 8
that our proposed Algorithm 7.1 can e�ciently be implemented on arbitrary
graphs, but its backbone is deeply motivated by the DCSBM which assumes
that the edges of the graph are generated independently at random. In typical
realizations of social graphs, however, the entries of the adjacency matrix
are highly correlated making indeed questionable the DCSBM assumption in
practice. In order to keep into account these additional dependences induced
by the presence of short cycles, in [KCN21] the authors recently proposed an
improved version of belief propagation (BP) algorithm, adapted to operate in
the presence of short cycles, further de�ning the related non-backtracking
matrix. Other “higher order approximations” exist to properly deal with the
non tree-like structure of a graph. To accomplish this task, a valid alternative
to the Bethe is the cluster variational method [Pel05].

The capability of properly treating dependencies is not constrained to
CD. In fact, in the context of correlation clustering, we discussed that the
i.i.d. sparsi�cation strategy is suboptimal in terms of performance, indeed
because it makes the entries of the kernel matrix asymptotically indepen-
dent. More e�cient sampling techniques may be designed achieving a good
level of sparsity, but keeping the correlations among the entries of the ma-
trix. The adoption of proper variational approximations to deal at once with
dependencies and sparsity is certainly key to design e�cient algorithms.

Most of our results revolve around the very popular (but somewhat sim-
plistic) problem of CD. In the chapters of Part III we however showed how
the intuitions and methods developed for CD can be easily extended to more
involved settings. This unveils on the one hand the power of the method and
on the other hand the depth of Claim 5.1, which is formulated for the DCSBM,
but that conveys an intuition that goes well beyond its assumptions.

Most crucially, based on this observation and the discussions of Chap-
ter 8, we envision that the “Bethe-Hessian” paradigm should be systemati-
cally considered as an alternative to the classical Laplacian and “weighted
adjacency” matrices that are commonly adopted for several machine learn-
ing applications. In fact, we showed that the most popular techniques for SC
can be interpreted as limiting cases of our proposed algorithms. The huge
advantage of our algorithms is that they constitute a bridge between these
extremes and consequently perform better at practical SC problems.

With this in mind, we close this manuscript with a question that invites
the practitioner to re�ect any time the eigenvectors of a weighted adjacency
or Laplacian matrix are exploited in one of the countless applications, whether
it is possible to de�ne a more appropriate graph matrix representation intro-
ducing a proper temperature parameter or a better variational approxima-
tion to obtain improved performances.
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RESUMÉ SUBSTANT IEL

catégorisation et apprentissage
La catégorisation, c’est-à-dire la capacité de regrouper des objets, est pro-
fondément ancrée dans l’intelligence humaine et joue un rôle prépondérant
dans l’apprentissage. On pourrait même dire que le critère suivi pour caté-
goriser les objets fournit précisément une dé�nition du concept abstrait lié
aux catégories elles-mêmes [Hul20].

Consciemment ou non, l’intelligence humaine permet à chacun d’entre
nous d’e�ectuer deux opérations de base. La première est d’identi�er les car-
actéristiques informatives des données d’entrée, c’est-à-dire celles qui sont
nécessaires et su�santes pour leur attribuer une étiquette. Ceci est fait en
fournissant une représentation de l’objet dans un espace paramétrique, de
sorte que des objets similaires dans le monde réel correspondent à des points
proches dans l’espace paramétrique. Cette étape est connue sous le nom
d’extraction de caractéristiques. La deuxième étape consiste à attribuer une
étiquette à chaque élément de la base des données, en fonction de sa po-
sition dans l’espace des caractéristiques. Selon le problème considéré, cela
peut être fait principalement de deux manières. L’une est la classi�cation:
il s’agit d’attribuer chaque élément à l’un des groupes possibles; l’autre est
le regroupement: dans ce cas, l’objectif est de diviser en groupes plusieurs
éléments, en fonction de leur proximité.

L’intérêt porté à l’extraction de caractéristiques et à l’étape suivante de
clustering ou classi�cation va au-delà de l’apprentissage humain et est à la
base de nombreux algorithmes d’apprentissage automatique [MRT18].

La classi�cation est généralement réalisée à l’aide d’algorithmes super-

visés, qui constituent une manière très intuitive (en principe) d’envisager
l’apprentissage et sont aujourd’hui le plus déployés. Un grand ensemble
de données dont les étiquettes sont connues est utilisé pour entraîner un
algorithme à générer une règle capable de prédire les étiquettes. Une fois
l’apprentissage terminé, la règle peut être utilisée pour classer des nouvelles
données. Les réseaux neuronaux font partie de cette classe d’algorithmes. Ils
sont nés pour reproduire le processus d’apprentissage qui se produit dans
le cerveau humain et constituent aujourd’hui l’état de l’art dans la plupart
des domaines en termes de performances. Cette approche présente toutefois
des inconvénients: l’étape d’apprentissage peut être coûteuse en termes de
temps de calcul, tandis que la création d’une base des données avec leurs
étiquettes peut prendre beaucoup de temps et de capacité de stockage.

En ce qui concerne le problème du regroupement, les techniques non su-
pervisées sont généralement préférées dans les cas où la machine ne dispose
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d’aucune information supplémentaire en dehors des données à regrouper.
L’absence d’“aide extérieure” entrave bien sûr les performances de l’apprentissage
non supervisé par rapport à l’apprentissage supervisé, mais les inconvénients
introduits par l’étape d’apprentissage sont ici contournés. Les algorithmes
d’apprentissage non supervisé pro�tent en fait de la capacité des machines
de traiter d’énormes quantités de données en peu de temps qui leur donnent
la possibilité d’exploiter e�cacement les relations entre ses éléments.

Bien que les algorithmes d’apprentissage supervisé soient aujourd’hui très
populaires en raison de leur capacité à obtenir des performances surhumaines,
de sérieuses inquiétudes doivent être soulevées quant à leurs exigences en
matière d’échantillons étiquetés et d’entraînement intensif en terme de temps
calcul [Usa+19]. En e�et, l’augmentation constante de la taille des ensembles
de données d’entrée ne peut (et probablement ne doit) pas s’accompagner
d’une croissance aussi rapide de l’e�ort de calcul. Dans cette perspective, les
techniques non supervisées jouent un rôle fondamental dans l’apprentissage
automatique moderne.

méthodes spectrales

les éléments de base
Le clustering a plusieurs applications dans di�érents domaines et est, en
général, un problème mal dé�ni [XW05; RM05; Sch07; WK18]. L’une des
classes les plus populaires d’algorithmes de clustering, qui est au cœur du tra-
vail présenté dans ce manuscrit, est composée des méthodes spectrales dont
les éléments constitutifs sont décrits comme suit.

La première étape consiste à fournir une représentation sous forme de
graphe aux données d’entrée. Ensuite, l’extraction de caractéristiques con-
siste à mettre en correspondance chaque élément (ou nœud du graphe) avec
un vecteur de petite dimension [CZC18; NS13]. Cela doit être fait de manière
à ce que des nœuds “similaires” soient projetés sur des vecteurs proches.
Dans le clustering spectral, la correspondance entre les nœuds et les vecteurs
est obtenue en exploitant les vecteurs propres d’une représentation matricielle
de graphe adaptée, M ∈ Rn×n. L’un des principaux avantages du clustering
spectral par rapport à d’autres méthodes repose sur ses solides fondements
théoriques et son caractère explicable.

L’étape �nale consiste à déterminer des frontières dans l’espace en petite
dimension pour séparer les points. L’algorithme le plus couramment adopté
pour accomplir cette tâche est k-means [Mac+67], mais d’autres solutions
telles que k-medoids [KR09], expectation maximization [DLR77] DBSCAN

[Est+96] et OPTICS [Ank+99] sont également des alternatives valables.

Sans doute, la tâche la plus importante dans les méthodes spectrales est
d’identi�er une représentation matricielle du graphe M telle que ses vecteurs
propres soient capables de produire une bonne projection des nœuds dans
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l’espace de petite dimension. Certains des choix les plus courants de M sont
une combinaison des matrices degré et adjacence du graphe, que nous allons
maintenant dé�nir.

Nous désignons par A ∈ {0, 1}n×n la matrice d’adjacence, dé�nie de telle
sorte que Aij = 1 si i et j sont connectés et est égale à zéro sinon. La matrice
de degré D ∈ Rn×n est une matrice diagonale telle que Dij = δij(A1n)i.

Certains choix populaires de M sont la matrice d’adjacence A elle-même,
la matrice Laplacienne D− A et les matrices Laplacienne normalisée Lsym =

D−1/2 AD−1/2, Lrw = D−1A [VL07; LR+15], avec des extensions possibles
également au cas pondéré dans lequel A est remplacé par W ∈ Rn×n.

une vue d’ensemble des méthodes spec-
trales
Les méthodes spectrales sont très interdisciplinaire et, a�n de décrire au
mieux où se situe le travail présenté dans ce manuscrit dans la littérature
existante, il faut garder une large perspective sur le problème.

Tout d’abord, comme nous l’avons mentionné précédemment, l’un des
principaux intérêts des méthodes spectrales réside dans leur solide base thé-
orique. De puissants outils basés sur la théorie des matrices aléatoires perme-
ttent de fournir des résultats précis sur les performances et l’applicabilité
d’un algorithme spectral. Typiquement, cependant, deux hypothèses impor-
tantes doivent être formulées: la taille n de la matrice M doit aller à l’in�ni
et le nombre d’entrées non nulles (que l’on note m) doit aller à l’in�ni plus
vite que n; [CBG+16; AC17, par exemple]. Alors que la première hypothèse
consiste simplement à considérer le cadre très intéressant des grands bases
de données, d’un point de vue pratique, la seconde hypothèse pose un prob-
lème du point de vue du passage à l’échelle des algorithmes de clustering
spectral. En e�et, le coût numérique du calcul des k vecteurs propres prin-
cipaux d’une matrice à m entrées non nulles croît comme O(mk2) [Saa92].
Considérons le cas m = n2, c’est-à-dire que toutes les entrées de la matrice
M sont non nulles, pour une petite valeur de k telle que k = 2. La complex-
ité est dans ce cas O(n2k2) qui est prohibitif pour un ordinateur portable
standard lorsque n > 105 environ.

Le problème de la complexité de calcul du clustering spectral est bien
connu dans la littérature et a conduit à plusieurs stratégies d’échantillonnage
visant à améliorer l’e�cacité du clustering spectral [TL20]. La procédure la
plus simple consiste simplement à rendre la matrice M plus parcimonieuse,
en mettant certaines de ses entrées à zéro, ce qui améliore signi�cative-
ment la vitesse de calcul de l’algorithme. Considérons en e�et une stratégie
d’échantillonnage qui conserve en moyenne 10 entrées non nulles dans chaque
ligne de M: la limite de calcul de l’ordinateur portable considéré précédem-
ment est maintenant obtenue pour n = 109 ce qui permet de traiter des
bases de données de taille considérable.
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Cette procédure d’échantillonnage a cependant un coût. Au-delà du fait
qu’en "jetant" certaines entrées (donc de l’information), les performances de
clustering peuvent naturellement être plus faibles, la parcimonie est connue
depuis longtemps pour être le point faible des méthodes spectrales. En fait,
pour de grands niveaux de parcimonie, les choix standards de M ont typique-
ment des performances faibles par rapport aux algorithmes non-spectraux.

Le problème de la parcimonie n’est pas seulement lié aux procédures de
échantillonnage. Une application naturelle du regroupement dans les graphes
consiste à diviser les nœuds d’un réseaux social en communautés. Les réseaux
sociaux réels sont souvent parcimonieux par construction [Bar13] (chaque
nœud interagit généralement avec une très petite fraction du total) et, par
conséquent, le regroupement spectral peut être peu performant dans les
tâches pratiques de détection de communautés. Dans l’ensemble, il s’agit
de limitations sévères des méthodes spectrales qui les rendent inadaptées à
un large ensemble des bases des données (comme les réseaux sociaux sus-
mentionnés) et qui ne permettent de bonnes performances qu’au prix d’un
coût de calcul élevé.

Une percée dans le domaine des méthodes spectrales dans les graphes
parcimonieux a toutefois été réalisée par [Krz+13] spéci�quement dans le
contexte de la détection de communautés. Le travail de [Krz+13], ainsi que
de [Dec+11; SKZ14], est basé sur des intuitions et des méthodes très pro-
fondes mais non rigoureuses empruntées à la physique statistique qui ont
renouvelé l’intérêt de la communauté scienti�que pour le sujet et ont con-
duit, dans les années suivantes, à formaliser la plupart de leurs résultats de
manière mathématiquement rigoureuse. En ce qui concerne la détection de
communautés, la principale contribution de [Krz+13; SKZ14] consiste à pro-
poser des matrices alternatives M, telles que les matrices hessienne de Bethe
et de non-backtracking, pour remplacer les choix “classiques”.

La hessienne de Bethe joue un rôle fondamental dans ce manuscrit, étant
le choix pour M dans tous nos algorithmes proposés. Dans le cas non pondéré,
sa dé�nition est la suivante: pour un scalaire r ≥ 1

Hr = (r2 − 1)In + D− rA,

où In est la matrice identité de taille n. La contribution fondamentale de ce
manuscrit est d’argumenter que M = Hr pour une valeur bien choisie de r
constitue un choix puissant pour le regroupement avec des méthodes spec-
trales dans les graphes parcimonieux qui atteint des performances élevées
dans les problèmes du monde réel.

Nous allons maintenant détailler nos principaux résultats.

contributions
A�n de fournir au lecteur les outils nécessaires pour comprendre au mieux
nos contributions, la partie I introduit les résultats techniques exploités dans



resumé substantiel 211

le reste. En particulier, le chapitre 1 fournit une introduction aux graphes,
ainsi que leurs dé�nitions et propriétés. Ensuite, le chapitre 2 présente les
outils fondamentaux de la physique statistique sur lesquels reposent nos
principaux résultats. En�n, le chapitre 3 présente des résultats mathéma-
tiques importants sur les propriétés spectrales de deux matrices fondamen-
tales dans ce manuscrit: la matrice de non-backtracking et la hessienne de
Bethe susmentionnées.

La partie II est ensuite consacrée à la présentation de nos contributions
originales dans le domaine des méthodes spectrales pour la détection de com-
munautés et est ouverte par le chapitre 4 qui fournit une introduction appro-
fondie au problème.

Nous reprenons ici le “�ambeau” de nos prédécesseurs et abordons le prob-
lème de la manière dont des hypothèses trop simplistes peuvent entraîner
de mauvaises performances algorithmiques. Plus précisément, dans [SKZ14],
les auteurs ont proposé un algorithme spectral très puissant pour la détec-
tion de communautés dans les graphes très parcimoniuex, basé sur la ma-
trice hessienne de Bethe Hr. Leurs résultats théoriques sont formulés sous
l’hypothèse que la matrice A est générée à partir du modèle stochastique par

blocs, selon lequel chaque nœud du graphe a approximativement le même
nombre de connections. Cependant, les réseaux sociaux réels (dans lesquels
la détection des communautés est de la plus haute importance) sont connus
pour être typiquement hétérogènes, dans le sens où le nombre de connec-
tions de chaque nœud varie beaucoup à travers le réseau. En conséquence
de cette hypothèse trop simpliste, l’algorithme de [SKZ14] (qui prescrit un
choix précis de r) a souvent des performances médiocres par rapport aux
algorithmes classiques de clustering spectral.

Nos premiers travaux sont présentés au chapitre 5 et expliquent comment
nous avons amélioré [SKZ14], en considérant un modèle génératif plus réal-
iste, appelé modèle stochastique par blocs de degrés corrigés (DCSBM) qui per-
met en e�et de tenir compte de l’hétérogénéité du graphe. Le premier de ces
travaux est [DC19]

LD, Romain Couillet: Community detection in sparse realistic graphs: Improving the

Bethe-Hessian in ICASSP IEEE International Conference on Acoustics, Speech
and Signal Processing (2019)

dans lequel nous avons proposé (pour k = 2 classes de taille égale) un choix
alternatif de r à celui de [SKZ14], capable de fournir un clustering perfor-
mant sur des graphes hétérogènes. La paramétrisation r proposée nécessite
cependant la connaissance de certains des paramètres du modèle génératif
du graphe qui ne peuvent être donnés pour acquis.

Avec notre contribution suivante [DCT19]

LD, Romain Couillet, Nicolas Tremblay: Revisiting the Bethe-Hessian: Improved Com-

munity Detection in Sparse Heterogeneous Graphs in NeurIPS Advances in Neural
Information Processing Systems 32 (2019)
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nous avons répondu à certaines des principales questions posé en [DC19] .
Premièrement, nous avons étendu nos résultats au contexte de k ≥ 2 classes
de tailles arbitraires, en montrant qu’une séquence de paramètres r correcte-
ment choisis doit être sélectionnée pour obtenir un algorithme spectral e�-
cace sur des graphes hétérogènes. Deuxièmement, nous avons montré que
ces paramètres r peuvent être estimés de manière non supervisée. Pour ce
faire, nous avons dévoilé une propriété imprévue des valeurs propres de la
matrice de non-backtracking B utilisée dans [Krz+13] et exploité la relation
connue entre B et Hr donnée par la formule d’Ihara-Bass [Ter10]. En�n,
à l’aide de plusieurs arguments et de simulations numériques, nous a�r-
mons que la paramétrisation que nous proposons est optimale, en ce sens
qu’aucune autre paramétrisation ne devrait être plus performante sur les
graphes générés par le DCSBM.

Le fait de disposer d’un moyen pratique d’estimer les valeurs optimales
de r de manière non supervisée nous a permis de concevoir et de tester
un algorithme pratique de détection de communautés. Les résultats con-
�rment que la paramétrisation améliorée atteint une performance systéma-
tiquement plus élevée par rapport à [SKZ14] sur tous les ensembles de don-
nées testés.

Dans la littérature, les contributions de la communauté des physiciens ne
sont pas les seules à avoir conduit à des algorithmes spectrales très e�caces
sur les graphes parcimonieux. En fait, une ligne de travail notable et indépen-
dante, avec une approche ancrée dans les statistiques a proposé l’utilisation
de nouvelles matrices régularisées. Dans ce resumé nous ne mentionnerons
que l’une de ces matrices, Lsym

τ = D−1/2
τ AD−1/2

τ , proposée dans [QR13]
avec Dτ = D + τ In pour τ égal au degré moyen du graphe. Cet algorithme
est de facto l’état de l’art pour la détection de communautés avec des méth-
odes spectrales sur des graphes réels. Dans le chapitre 6, nous présentons
nos travaux relatifs à Lsym

τ , commencés dans [DCT20c]

LD, Romain Couillet, Nicolas Tremblay: Optimal Laplacian regularization for sparse

spectral community detection in ICASSP IEEE International Conference on
Acoustics, Speech and Signal Processing (2020)

où nous avons montré qu’il existe une relation claire entre la matrice hessi-
enne de Bethe Hr et le Laplacien régularisé Lsym

τ . En outre, sur la base de
nos résultats dans [DC19; DCT19] , nous avons montré que le choix de τ

dans [QR13] est sous-optimal. La régularisation optimale du Laplacien est
obtenue avec un ensemble de τ étroitement lié aux r à adopter pour Hr et
qui peut être estimé à partir du graphe de manière non supervisée. D’ailleurs,
certains des résultats présentés dans les chapitres 5, 6 sont tirés de [DCT20a]

LD, Romain Couillet, Nicolas Tremblay: A uni�ed framework for spectral clustering

in sparse graphs accepted to Journal of machine learning research

dans lequel nous avons résumé nos résultats dans un cadre uni�é en faisant
des déclarations formelles de nos conjectures et en fournissant des preuves
rigoureuses pour une partie d’entre elles. Une autre contribution importante
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de [DCT20a] est au centre du chapitre 7 et concerne l’applicabilité de nos
algorithmes proposés sur des graphes réels pratiques ainsi que leur mise
en œuvre e�cace. Nous proposons ici l’Algorithme 7.1 pour la détection de
communautés et menons une étude systématique sur des ensembles de don-
nées réelles montrant l’e�cacité de notre méthode pour des tâches pratiques.
De plus, nous avons également publié une implémentation e�cace en lan-
gage Julia de l’Algorithme 7.1 pour la détection de communautés, appelée
CoDeBetHe.jl. (Community Detection with the Bethe Hessian).

Le chapitre 8 clôt �nalement la partie II en partant des résultats posés
dans [DCT20a] pour fournir une vue uni�ée de plusieurs méthodes de clus-
tering spectral qui ont jusqu’à présent été traitées indépendamment. Dans ce
chapitre, en fait, nous montrons clairement que l’algorithme que nous pro-
posons est adaptatif à la dureté de la tâche de clustering et que les méthodes
courantes de l’état de l’art dans les régimes parcimonieux et denses peuvent
être comprises comme des cas limites (sous-optimales) de l’Algorithme 7.1.

Ces résultats posent des bases méthodologiques solides qui nous ont con-
duit à travailler sur les extensions de nos travaux à des contextes plus généraux
que la détection de communautés, traitées dans la partie III. Le premier prob-
lème que nous avons considéré concerne la detection des communautés dans

des graphes dynamiques (DCD), qui enrichit la description en tenant compte
de la nature dynamique des graphes du monde réel. Dans [DCT20b]

LD, Romain Couillet, Nicolas Tremblay: Community detection in sparse time-

evolving graphs with a dynamical Bethe-Hessian in NeurIPS Advances in Neural
Information Processing Systems 33 (2020)

nous avons considéré une séquence d’instantanés de graphes à di�érents mo-
ments avec l’hypothèse que les étiquettes des communautés peuvent changer
dans le temps, tout en ayant une corrélation positive. Nous avons développé
un nouvel algorithme spectral basé sur la matrice hessienne de Bethe dy-
namique, capable d’exploiter l’information provenant de ces corrélations et
qui surpasse largement les concurrents de l’état de l’art. Les résultats de
[DCT20b] sont traités dans le chapitre 9 et l’algorithme correspondant fait
également partie du paquet CoDeBetHe.jl.

En�n, les travaux de [DCT21]

LD, Romain Couillet, Nicolas Tremblay: Nishimori meets Bethe: a spectral method for

node classi�cation in sparse weighted graphs in Journal of Statistical Mechanics:
Theory and Experiment

sont présentés dans le chapitre 10 et traitent de l’extension de nos travaux
au cadre de la sparsi�cation matricielle pour améliorer l’e�cacité des méth-
odes spectrales, tout en conservant des performances élevées. En testant
l’algorithme que nous proposons sur un problème prototypique de l’apprentis-
sage automatique d’images de chiens et de chats, nous avons montré qu’une
précision presque parfaite peut être obtenue même pour des niveaux de spar-
si�cation très élevés, ce qui rend notre algorithme adapté au regroupement

https://github.com/lorenzodallamico/CoDeBetHe.jl
https://github.com/lorenzodallamico/CoDeBetHe.jl
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de très grands ensembles de données. Le résultat principal de [DCT21] ,
cependant, est profondément lié à la physique statistique, décrivant une rela-
tion explicite entre l’approximation de Bethe (à partir de laquelle la matrice
hessien de Bethe est dérivée) et la température de Nishimori. [Nis81], d’une
importance fondamentale en physique des verres de spin et en inférence op-
timale bayésienne [Iba99].

Ensemble, ces travaux o�rent une nouvelle vision et des algorithmes adap-
tatifs robustes, reliant la physique statistique et les méthodes spectrales les
plus conventionnelles dans des graphes parcimonieux, hétérogènes et dy-
namiques.
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A
DCSBM PERCOLAT ION

THRESHOLD

In this appendix we prove Theorem 1.1 which provides a necessary and su�-
cient condition for the existence of a giant component in a multi-class (with
unequal sizes) DCSBM. This theorem is an application of [BJR07, Theorem 3.1]
to the present DCSBM setting. For convenience, we recall here the formula-
tion of Theorem 1.1.

TheoremA.1 (Percolation threshold in DCSBM, [DCT20a]). Consider a graph
G(V , E) generated according to the DCSBM procedure as in De�nition 1.11. Let

Π = diag(π1, . . . , πk) and assume that the constant c is the largest eigen-

value of CΠ with eigenvector 1k. Then, for all large n, with high probability,

G(V , E) has a giant component if and only if cΦ > 1.

Proof. In our proof we will use [BJR07, Theorem 3.1] which requires to write
the graph G(V , E) as a graphon. Let us de�ne the “node” variable x = θv ∈
S , with probability distribution µ(x), where

• θ ∈ Θ is a scalar that distributed according to ν.

• v ∈ {e1, . . . , ek}with ep ∈ Rk satisfying ep,` = δ`p; v is a k-dimensional
random vector with law P(v = ep) = πp; that is, v encodes the class
to which node x belongs.

• The probability density of x is denoted by µ(x) and is de�ned on S =

∪k
`=1S` where S` = [θmine`, θmaxe`]. The measure µ(x) is equal to

π`ν(θ) if x ∈ S` and it is indeed normalized:∫
S

dµ(x) =
k

∑
`=1

π`

∫
Θ

dν(θ) =
k

∑
`=1

π` = 1.

Given two such nodes, we next de�ne the graphical kernel κ(x, y) =

xTCy, satisfying the three conditions of [BJR07, De�nition 2.7]. With these
notations at hand, the generative procedure of the DCSBM under consider-
ation is equivalent to: drawing n independent values {xi}i=1,...,n from µ(·)
and then generating the edges independently according to pij = min

(
κ(xi ,xj)

n , 1
)

;
we thus fall precisely under Bollobas’ framework.

In order to use the core argument of [BJR07, Theorem 3.1], we still need
to de�ne the linear operator Tκ , an operator on f : Rk → R, endowed with
the norm ‖ f ‖2

2 =
∫
S f 2(x) dµ(x), as:

∀ x ∈ S , (Tk f )(x) =
∫
S

κ(x, y) f (y) dµ(y)

217
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The square 2-norm of this operator, ‖Tκ‖2, reads

‖Tκ‖2
2 = sup

‖ f ‖2≤1

∫
S
(Tκ f )2(x) dµ(x). (A.1)

According to [BJR07, Theorem 3.1], with high probability, a giant com-
ponent appears in G(V , E) if and only if ‖Tκ‖ > 1. We thus are left to
evaluating ‖Tκ‖ for the kernel xTCy: we will show that it equals cΦ, �rst
by showing that ‖Tκ‖ ≤ cΦ and then �nding a particular function f for
which the bound is attained.

Let f be a function from Rk to R. We introduce its associated vector ω f ∈
Rk as follows.

(Tκ f )(x) =
∫
S

κ(x, y) f (y) dµ(y) =
∫
S

xTCy f (y) dµ(y)

= xTC
k

∑
`=1

π`e`
∫

Θ
θ f (θe`) dν(θ) ≡ xTCΠω f , (A.2)

where ∀ `, ω f ,` =
∫

Θ θ f (θe`) dν(θ). From Equation (A.2), one thus has:∫
S
(Tκ f )2 (x)dµ(x) =

∫
S

ωT
f ΠCxxTCΠω f dµ(x)

= Φ ωT
f ΠC

(
k

∑
`=1

π`e`eT
`

)
CΠω f

= Φ ωT
f ΠCΠCΠω f . (A.3)

Injecting the result of Equation (A.3) into Equation (A.1) we obtain

‖Tκ‖2
2 = Φ sup

‖ f ‖2≤1
ωT

f ΠCΠCΠω f = Φ sup
‖ f ‖2≤1

ωT
f ΠCΠCΠω f

ωT
f Πω f

·ωT
f Πω f

≤ Φ sup
‖ f ‖2≤1

ωT
f ΠCΠCΠω f

ωT
f Πω f

· sup
‖ f ‖2≤1

ωT
f Πω f (A.4)

Analyzing the �rst element, we can write for v f = Π1/2ω f :

sup
‖ f ‖2≤1

ωT
f ΠCΠCΠω f

ωT
f Πω f

= sup
‖ f ‖2≤1

vT
f Π1/2CΠCΠ1/2v f

vT
f v f

≤sup
v∈Rk

vTΠ1/2CΠCΠ1/2v
vTv

i.e.:

sup
‖ f ‖2≤1

ωT
f ΠCΠCΠω f

ωT
f Πω f

≤ λ↓1(Π
1/2CΠCΠ1/2) = λ↓1

(
(CΠ)2) = c2,
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as, by hypothesis, c is the Perron eigenvalue of CΠ, and as such is larger
than the modulus of any other eigenvalue: λ↓1

(
(CΠ)2) is indeed c2. We can

therefore rewrite Equation (A.4) as

‖Tκ‖2
2 ≤ c2Φ sup

‖ f ‖2≤1
ωT

f Πω f .

Analyzing the right-hand side term, we have

ωT
f Πω f =

k

∑
`=1

π`ω
2
f ,` =

k

∑
`=1

π`

(∫
Θ

θ f (θe`) dν(θ)

)2

which, by Cauchy-Schwartz’s inequality is bounded as(∫
Θ

θ f (θe`) dν(θ)

)2

≤
(∫

Θ
θ2dν(θ)

)(∫
Θ

f 2(θe`) dν(θ)

)
≤ Φ,

where in the last step we used the fact that the norm of f is less than or equal
to one. We thus obtain that sup

‖ f ‖2≤1
ωT

f Πω f ≤ Φ and conclude that

‖Tκ‖2
2 ≤ (cΦ)2. (A.5)

We are thus left to showing that there exists a function f for which the
bound is reached. Let us consider f̄ (x) = ‖x‖/

√
Φ. It is easy to check that

this function has unit norm

‖ f̄ ‖2
2 =

∫
S

(
‖x‖√

Φ

)2

dµ(x) =
1
Φ

∫
S

θ2‖e`‖2 dµ(x) =
1
Φ

∫
S

θ2 dµ(x) = 1.

Furthermore, observe that ω f̄ =
√

Φ1k. Then, we have

‖Tκ‖2
2 = Φ sup

‖ f ‖2≤1
ωT

f ΠCΠCΠω f ≥ ΦωT
f̄ ΠCΠCΠω f̄

≥ Φ21T
k Π(CΠ)21k = (cΦ)2 (A.6)

as, by hypothesis, we suppose that CΠ1k = c1k.

Combining Equations (A.5) and (A.6), we �nd that ‖Tκ‖ = cΦ so that,
from [BJR07, Theorem 3.1], we conclude that the percolation transition is at
cΦ = 1 and a giant component exists if and only if cΦ > 1.
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b.1 definition of ζ on the sparse
dcsbm

In this appendix we show that for a graph generated from the sparse DCSBM,
the two following de�nitions of ζ

(j)
p (where j is the giant component) are

indeed equivalent with high probability for p ≥ 2 if ζ
(j)
p exists:

ζ
(j)
p =min

r≥1
{r : λ↑p(H(j)

r ) = 0}, (B.1)

ζ
(j)
p =min

r>1
{r : λ↑p(Hr) = 0}. (B.2)

We will further discuss that, with high probability, ζ
(j)
p > 1 exists only for

the giant component.

This appendix is structured as follows. First we enunciate two lemmas and
one corollary to state that when an arbitrary connected graph has at most
one cycle, the spectrum of its associated non-backtracking matrix B does
not have real eigenvalues that are larger than one in modulus.

We then proceed by arguing that with high probability, for large DCSBM
graphs, the small connected components do not have more than one cycle,
implying that all the real eigenvalues of B that are larger than one in mod-
ulus come from the giant component. Finally we show that this last state-
ment implies that the two de�nitions of ζ

(j)
p given in Equations (B.1,B.2) are

indeed equivalent with high probability. The proofs of the two lemmas and
the corollary close Appendix B.1.

Lemma B.1 (Spectrum of B on a tree). Let G(V , E) be a tree. Then, all the

eigenvalues of its associated non-backtracking matrix are equal to zero.

From Lemma B.1 we conclude that non-zero eigenvalues of B imply the ex-
istence of cycles in G(V , E) which must exist to de�ne the ζp’s. The second
lemma considers the e�ect of adding a node to an arbitrary graph G(V , E).

Lemma B.2 (Spectrum of G plus a node). Let G ′ be a graph obtained by

adding one node and one edge to the graph G , i.e. for i /∈ V and an arbitrary

j ∈ V , V ′ = V ∪ {i} and E ′ = E ∪ (ij). Then, all the non-zero eigenvalues
of B(G ′) are equal to the non-zero eigenvalues of B(G), where B(G) is the
non-backtracking matrix of G .

221
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Applying recursively Lemma B.2 one easily obtains that, attaching a tree
to a node of G(V , E), all the non-zero eigenvalues of B are left unchanged.
In simple words, the tree part of a graph is “invisible” to the spectrum of B
and contributes to it with null eigenvalues. The last property is a Corollary
of Lemma B.2 and shows that cycles lead to non-trivial eigenvalues in the
spectrum of B.

Corollary B.1 (Spectral radius of a connected graph with |E | = |V|). Let
G(V , E) be a connected graph with |E | = |V|. Then λ

↓|·|
1 (B) = 1.

A graph with |E | = |V| is simply obtained adding an edge between two
arbitrary nodes of a tree, creating one cycle.

With the results of the former two Lemmas, we proceed to argue that all
the eigenvalues of B that are larger than one in modulus come from the gi-
ant component. Let Λ(B) be the set of all eigenvalues of B. Since the graph
is disconnected, Λ(B) =

⋃ncc
j=1 Λ

(
B(j)
)

, i.e., each connected component
contributes independently to the eigenvalues of B. The expected size of the
small connected components grows as log(n) [BJR07, Thm. 3.12]. We claim
that this implies that the probability that a small connected component con-
tains two or more cycles is on(1), thus tending to zero as n grows to in�nity.
Applying Lemma B.1 (for zero cycles) and Corollary B.1 (for one cycle), we
conclude that, with high probability all the real eigenvalues of B larger than
one in modulus will come from the giant component. From Theorem 2.1, for
all the eigenvalues λ 6= ±1, λ ∈ Λ(B) ⇐⇒ det[Hλ] = 0. From the def-
inition of ζ

(j)
p≥2 we gave in Equation (5.2), we have that all the ζ

(j)
p > 1 are

in the spectrum of B. We may conclude that, if ∃ j such that ζ
(j)
p≥2 > 1, then

with high probability j is the giant component. We now conclude showing
that this statement implies the equivalence between (B.1) and (B.2).

Let p > 1, then certainly ζ
(j)
p > 1, if it exists. We denote with j the giant

component and we want to prove that for r, p ≥ 2

λ↑p(H(j)
r ) = λ↑p(Hr) (B.3)

Consider ζ
(j)
p > 1 such that λ↑p(H(j)

ζ
(j)
p
) = 0, then certainly there exists1

q ≥ p such that λ↑q(H
ζ
(j)
p
) = 0 and so it is enough to show that p = q. We

proceed with a proof by contradiction. Suppose that p 6= q, then there ex-

ists j′ 6= j such that λ↑1

(
H(j′)

ζ
(j)
p

)
≤ 0. Applying Gershgorin circle theorem

[JH85], it is easy to show that for r > dmax − 1, the matrix Hr is positive
de�nite. Consequently, there exists r ≥ ζ

(j)
p > 1 such that λ↑1(H(j′)

r ) = 0.
From the Ihara-Bass formula, r is thus in Λ(B), so there is a real eigenvalue
of B larger than one not coming from the giant component. This is in con-
tradiction with what stated above, thus concluding our argument.

1 As Λ(Hr) = ∪ncc
j=1Λ

(
H(j)

r

)
.
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We now provide a proof of Lemma B.1, B.2 and Corollary B.1.

Proof of Lemma B.1. Consider a vector g ∈ R|Ed| and de�ne g(m)∈ R|Ed| as

g(m)
ij = ∑

(k`) : d(ij,k`)=m
gk`. (B.4)

The notation d(ij, k`) = m indicates that there exists a non-backtracking
path from the edge (ij) to the edge (k`) of length m. From a straightforward
calculation one obtains

(Bg(m))ij = ∑
`∈∂j\i

∑
(kq):d(j`,kq)=m

gkq = g(m+1)
ij . (B.5)

For all trees, for any two edges we have that d(ij, k`) ≤ n− 1, so there is a
value of mc ≤ n− 1, which represents the maximal distance between any
two directed edges, such that, for all vectors g,

Bg(mc) = 0. (B.6)

This relation comes from the fact that, by de�nition of mc, no two edges
are at a distance equal to mc + 1, so {(k` : d(ij, k`) = mc + 1} = ∅ for
any edge (ij). Now, let us consider g to be an eigenvector of B, such that
Bg = λg. Then we can write

0 = Bg(mc) = B2g(mc−1) = · · · = Bmc−1g = λmc−1g. (B.7)

Thus concluding that any eigenvector g of B is associated to eigenvalue zero.
Note that in other words, this means that B is nilpotent.

Proof of Lemma B.2. Let i be the newly added node and j the node in V to
which i is attached. The matrix B(G ′) can be written by adding to the matrix
B(G) two rows and two columns corresponding to the directed edges (ij)
and (ji). We introduce the notation I(•j) ∈ R|Ed|. Its element-wise de�nition
reads for all (yx) ∈ Ed as I

(•j)
yx = δxj. Similarly, we de�ne I(j•) ∈ R|Ed|

with I
(j•)
yx = δyj. Denote with M = (I(j•), 0|Ed|) ∈ {0, 1}|E |×2 and M′ =

(0|Ed|, I(•j)) ∈ {0, 1}|Ed|×2. The matrix B(G ′) can be written as:

B(G ′) =
(

B(G) M′

MT 02×2

)
We now look for the non-zero eigenvalues of λ of B(G ′). Consider λ ∈ C∗.
Using a block matrix determinantal formula one has:

det
(

B(G ′)− λI2|E ′d|

)
= det(−λI2)det

(
B(G)− λI|Ed|+

1
λ

M′MT
)

.

It is straightforward to check that M′MT = 0|Ed|×|Ed|, thus

det
(

B(G ′)− λI|E ′d|
)
= λ2det

(
B(G)− λI|Ed|

)
A non-zero eigenvalue of B(G ′) (cancelling the determinant) is thus neces-
sarily also an eigenvalue of B(G), ending the proof.
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Proof of Corollary B.1. A connected graph with |E | = |V| can be obtained
by adding an edge between any two nodes of a particular tree de�ned on
V . The graph G thus contains only one cycle. We now apply Lemma B.2
“backwards”, i.e., removing nodes with unitary degree (called leaves) from
G(V , E) without a�ecting the non-zero eigenvalues of B. By iteratively re-
moving all leaves, the graph G(V , E) reduces to a cycle. We are thus left to
prove that λ

↓|·|
1 (B) = 1 on a cycle. It is straightforward to check that on

any d-regular graph, the vector 1|Ed| is the Perron-Frobenius eigenvector of
B with eigenvalue equal to d− 1. A cycle is a d-regular graph with d = 2,
hence the result.

b.2 the eigenvalues of T

We here want to show that λ↓p(T) = 1
c λ↓p+1(CΠ) for 1 ≤ p < k. Consider

the following equivalent identities for the matrix T = ΠC
c −Π1k1T

k :

(
ΠC

c
−Π1k1T

k

)
ap = λ↓p(T)ap(

CΠ
c
− 1k1T

k Π
)

bp = λ↓p(T)bp; bp = Π−1ap

Since CΠ1 = c1k and 1T
k Π1k = 1, then bk = 1k. By introducing dp =

Π1/2bp, we can write:(
Π1/2CΠ1/2

c
−Π1/2bkbT

k Π1/2
)

dp = λ↓p(T)dp(
Π1/2CΠ1/2

c
− dkdT

k

)
dp = λ↓p(T)dp

Given that the dk are eigenvectors of a symmetric matrix, then dT
p dq = δpq,

so, for p < k

Π1/2CΠ1/2

c
dp = λ↓p(T)dp

CΠ
c

bp = λ↓p(T)bp

From this last equation the result follows directly.



C
SPECTRAL CLUSTER ING

IN DYNAMICAL GRAPHS

c.1 detectability threshold at
finite T

In this appendix we provide the supporting arguments to Claim 9.1.

Recall the De�nition 9.4 of the aggregate graph G . As a consequence of
the sparsity of each Gt, the graph G , obtained by connecting together the
same node at successive times is locally tree-like, i.e. the local structure of
G around a node v ∈ V is the same as that of a Galton-Watson tree T (v)
[DM+10a], rooted at v, designed according to the following procedure:

1. Let `v ∈ {1, 2} be the label of v

2. Next generate its progeny by creating ds spatial children (i.e., nodes
which live at the same time as v), where ds is a Bernoulli random
variable with mean cΦ, and two temporal children (i.e., nodes which
are the projection of v at neighbouring times)

3. For each spatial child w, assign the label `w = `v with probability
cin/(cin + cout) and `w = 3 − `v otherwise; the temporal children
keep the same label as v with probability (1 + η)/2 and change it
with probability (1− η)/2

4. Each node thus created further generates its own set of o�spring, with
the only di�erence that the temporal children only bear one extra tem-
poral child, while spatial children bear two.

In the limit n, T → ∞, for any arbitrary v ∈ V , the probability distribu-
tion around a neighbourhood of v reachable in a �nite number of steps is
asymptotically the same as T (v), the Galton-Watson tree rooted at v. The
local tree-like structure is preserved for �nite T (and n→ ∞) but the bound-
ary conditions imposed by t = 1 and t = T must be accounted for.

Taking inspiration from the results of [JM+04] on robust reconstruction
on trees, the authors of [Gha+16] conjectured a generalization for a multi-
type branching process, such as just described to construct T (v). The con-
jecture of [Gha+16] (which we adapted to the DDCSBM, rede�ning α, follow-
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ing the work of [GLM15]) states that, for T → ∞, community detection is
possible if and only if the largest eigenvalue of

M∞(α, η) =

(
α2 2η2

α2 η2

)
(C.1)

is greater than one. Taking a closer look at M∞, one sees that �rst row is
given by the contribution of spatial children,1 while the second one from
temporal children. For �nite T, at each time instant, one can identify three
types of edges: spatial edges (connecting nodes in Gt to nodes in Gt), forward
temporal edges (connecting nodes in Gt to nodes in Gt+1) and backwards
temporal edges (connecting nodes in Gt to nodes in Gt−1). We construct a
matrix M̃T(α, η) ∈ R3T×3T identifying the rows and the columns as

{(backwards temporal)t, (spatial)t, (forward temporal)t}t=1,...,T.

A (backwards temporal)t edge goes from a node in Vt to a node in Vt−1

that has, on average, cΦ spatial children with label correlation equal to
γ = (cin− cout)/(cin + cout) and one backwards temporal child, with label
correlation equal to η. Similarly (spatial)t goes from a node in Vt to a node
in Vt having cΦ temporal children and, one forward and one backwards tem-
poral children; �nally, (forward temporal)t goes from Vt to Vt+1 with one
forward temporal child and cΦ spatial children. The entry i, j of M̃T(α, η)

is then set equal to the number of o�-springs of type j of a node reached
by an edge of type i, multiplied by the square label correlation. As forward
temporal edges do not exist for t = T and backwards temporal edges do not
exist for t = 1, the matrix M̃T(α, η) ∈ R3T×3T takes the form

M̃T(α, η) =



M̃+
d M+ 0 . . . 0

M̃− Md
. . . . . . 0

0 M−
. . . M+ 0

...
... . . . Md M̃+

0 0 . . . M− M̃−d


(C.2)

where

Md =

 0 0 0

η2 cΦγ2 η2

0 0 0

 ; M+ =

0 0 0

0 0 0

0 cΦγ2 η2

 ; M− =

η2 cΦγ2 0

0 0 0

0 0 0



M̃+
d =

0 0 0

0 cΦγ2 η2

0 0 0

 ; M̃+ =

0 0 0

0 0 0

0 cΦγ2 0

 ;

M̃− =

0 cΦγ2 0

0 0 0

0 0 0

 ; M̃−d =

 0 0 0

η2 cΦγ2 0

0 0 0

 .

1 Note that α2 = cΦγ, where γ = (cin − cout)/(cin + cout) is the label covariance of neigh-
bouring nodes.



appendix c 227

Note that, since the �rst and the last rows of M̃T(α, η) only have zero entries,
M̃T(α, η) has the same non-zero eigenvalues as MT(α, η) of Claim 9.1. This
also implies that MT(α, η) shares the non-zero eigenvalues of a matrix of
size (3T − 2)× (3T − 2) as conjectured in [Gha+16].

c.2 spectrum of Bξ ,h

In this appendix we provide support to Claim 9.2, studying the spectrum of
Bξ,h with a method that can be seen as a generalization of [Krz+13], intro-
duced in Section 3.2.1. We recall that this method consists in identifying a
guess eigenvector of Bξ,h and determine the conditions under which its ex-
pectation is expected to be a good approximation of one the eigenvectors of
the dynamical non-backtracking matrix. To do so, we �rst determine the po-
sition of the eigenvalues belonging to the informative family (starting from
the largest) and then of the uninformative family. Secondly, we analyze the
variance of the expression of the expected eigenvector and see under what
condition the expectation is meaningful. With this result we �nally deter-
mine the value of Lξ,h (the radius of the bulk of Bξ,h).

c.2.1 the position of the informative
eigenvalues

In this section we determine the position of the informative eigenvalues of
Bξ,h with modulus larger than Lξ,h. To do so, we �rst study the largest of
them in the limiting case T → ∞, to then extend our �ndings for �nite T to
all other eigenvalues.

The limiting case of T → ∞

Consider the aggregate graph G of De�nition 9.4. Let ωij = ξ if there exists t
such that (ij) ∈ Ed,t and ωij = h otherwise, and let g(r) ∈ R|Ed|, for r ∈N,
be the vector with entry

g(r)ij =
1

λr
info,1

∑
(wx) : d(jk,wx)=r

k 6=i

W(jk)→(wx)σx, (C.3)

where {(jk) : d(jk, wx) = r} is the set of directed edges (jk) such that
the shortest directed non-backtracking path connecting (jk) to (wx) is of
length r, and where W(jk)→(wx) is the “total weight” of this shortest path
de�ned as the product of each edge weight ωij, i.e,

W(jk)→(wx) = ω(jk)ω(k·) · · ·ω(·w)ω(wx).

The quantity σx ∈ {±1} takes its value according to the label of node x. The
value of λinfo,1 appearing in Equation (C.3) will be chosen in order to enforce
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the vector g(r) to be an approximate eigenvector of Bξ,h. By the de�nition
of g(r), we �nd that

(Bξ,hg(r))ij = λinfo,1g(r+1)
ij . (C.4)

We now analyze this expression exploiting the tree-like approximation elab-
orated in Appendix C.1. Resuming from this approximation, the expectation
of g(r)ij may be written under the following form:

E[g(r)ij ] =
1

λr
info,1

(
cΦγξχ

(r−1)
s + φiηhχ

(r−1)
t

)
σj. (C.5)

Here the �rst addend is the contribution of the spatial children of j which are
on average cΦ in number, and for each of them the weight of the connecting
edge is equal to ξ while the correlation between the labels γ = E[σjσk]. Each
spatial child being at a distance r− 1 from the target edges – themselves at
a distance r from (jk) – contributes to the sum through a term which we
denoted χ

(r−1)
s > 0. Similarly, the second addend is the contribution of the

temporal children which are φi = 2 in number if (ij) is a spatial edge or φi =

1 if (ij) is a temporal edge; their own contribution is denoted χ
(r−1)
t > 0. The

correlation of the labels of temporal children is equal to η and the weight of
the edges is equal to h. Importantly note that, as a consequence of γ, ξ, η, h
being assumed to be all positive, both χ

(r)
s and χ

(r)
t are positive as well.

By recurrence, the values of χ
(r)
s/t, which we just de�ned, then undergo the

following relation(
χ
(r)
s

χ
(r)
t

)
=

(
cΦγξ 2ηh

cΦγξ ηh

)(
χ
(r−1)
s

χ
(r−1)
t

)
=

(
cΦγξ 2ηh

cΦγξ ηh

)r (
χ
(0)
s

χ
(0)
t

)

≡
(

M∞(
√

cΦγξ,
√

hη)
)r
(

χ
(0)
s

χ
(0)
t

)
,

where M∞(·, ·) is the matrix introduced in Equation (9.3). For simplicity we
will denote it as M∞. For, say, r ∼ log(n), χ

(r)
s/t ≈

[
λ
↓|·|
1 (M∞)

]r
vs/t, where

v = (vs, vt) is the eigenvector associated to the eigenvalue of M∞ of largest
amplitude. Equation (C.5) can therefore be further approximated as

E[g(r)ij ] =

(
λ
↓|·|
1 (M∞)

λinfo,1

)r

(cΦλξvs + φiηhvt) σj + o

(
λ
↓|·|
1 (M∞)

λinfo,1

)r

.

This expression naturally leads to the choice λinfo,1 = λ
↓|·|
1 (M∞) for which

E[g(r)ij ] is independent of r, thus turning Equation (C.4) into an approximate
eigenvector equation and λinfo,1 into a close approximation of one of the real
eigenvalues of Bξ,h.

We now extend this result to the case of �nite T, and bring further con-
clusion on all the eigenvalues of Bξ,h belonging to the informative family.
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The case of �nite T

As we discussed already along Appendix C.1, the case of �nite T introduces
further di�culties due to the time-boundaries t = 1 and t = T. This being
accounted for, when analyzing the contribution of each edge, not only we
have to distinguish between spatial and temporal edges, but also to specify
the time at which the edge lives. More precisely, suppose that j ∈ Vt for
1 ≤ t ≤ T. We can rewrite Equation (C.5) as

E[g(r)ij ] =
1

λinfo,1

[
cΦγξχ

(r−1)
s,t + (1− δ1,t)ηhχ

(r−1)
b,t + (1− δT,t)ηhχ

(r−1)
f ,t

]
,

where χ
(·)
s,t , χ

(·)
b,t , χ

(·)
f ,t are respectively the contributions to the of a spatial, a

backwards temporal and a forward temporal child of a node j ∈ Vt. The
relation between all the χ’s directly unfolds from the branching process
at �nite T that we already discussed in Appendix C.1. More precisely, let
χ(r) = {χ(r)

b,t , χ
(r)
s,t , χ

(r)
f ,t}t=1,...,T , then the following relation holds:

χ(r) = MT

(√
cΦγξ,

√
ηh
)

χ(r−1), (C.6)

where MT(·, ·) is the matrix appearing in Claim 9.1. Following the argument
we just detailed for T → ∞, we then get that the largest eigenvalue of the in-
formative family is asymptotically close to λinfo,1 = λ

↓|·|
1

(
MT

(√
cΦλξ,

√
ηh
))

.

This analysis also allows us to describe the subsequent eigenvalues λinfo,i≥2
belonging to the informative family that have a smaller modulus. These
modes are metastable con�gurations of the branching process as in con�gu-
ration 4 of Figure 9.5. In these modes, nodes belonging to di�erent commu-
nities are still distinguished (hence the reason why these modes are informa-

tive), but the class identi�cation σx may be reversed across time. This results
in a state in which neighbours are more likely to change label than to keep it,
hence they have negative label correlation and lead to negative values of χ.
This means to relax the constraint χ > 0 and thus no longer looking for the
leading eigenvalue of MT . From this intuition we argue that the subsequent
informative eigenvalues of Bξ,h coincide with the subsequent eigenvalues of
MT

(√
cΦγξ,

√
ηh
)

which, as we already commented in the main text, are
not necessarily real.

We now proceed extending our arguments to the uninformative family of
isolated eigenvalues of Bξ,h.

c.2.2 the position of the uninformative
isolated eigenvalues

As in the static case, not all stable con�gurations of the branching process
of Appendix C.1 are informative. In particular, two nodes of G might be
considered to belong to the same community only because they live at the
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same time. Based on the technique detailed in Section C.2.1, we now describe
the position of the eigenvalues forming the uninformative family. Although
these eigenvalues are not informative, the awareness of their presence is
crucial if one has to avoid to mistakenly use one of these for community
reconstruction.

We proceed again by studying the largest of these eigenvalues (which is
also the largest eigenvalue of Bξ,h), to then extended the result to all the
others. Let us denote {λuninfo,i}i=1,...,T this second set of (trivial and non-
informative) eigenvalues. The approximate Perron-Frobenius eigenvector
b ∈ R|Ed| can be written as

b(r)ij =
1

λr
uninfo,1

∑
(wx) : d(jk,wx)=r

k 6=i

W(jk)→(wx). (C.7)

According to this expression, we set σx = 1 for all nodes and thus the correla-
tion between σx and σy is always unitary. Following the argument developed
to determine the value of λinfo,1, we then obtain

λuninfo,1 = λ
↓|·|
1

(
MT

(√
cΦξ,

√
h
))

. (C.8)

As in Section C.2.1, this eigenvalue is necessarily real and the subsequent
eigenvalues of the uninformative family are given by the subsequent eigen-
values of MT

(√
cΦξ,

√
h
)

and can be complex. We underline once again
that the ordering of {λinfo,i}i≥1 and {λuninfo,i}i≥1 is not known a priori.

So far we determined the position of the isolated eigenvalues under the
assumption that the expectation of the approximate eigenvectors are sig-
ni�cant. In order to know when this analysis holds, we have to study the
variance of the entries of the approximate eigenvectors and see under what
conditions it vanishes. This analysis will also allow us to determine the value
of the radius of the bulk of Bξ,h.

c.2.3 the bulk eigenvalues of Bξ ,h

To begin with, we investigate under which conditions the approximate eigen-
vector Equations (C.5, C.7) hold. We then proceed with a study of the vari-
ance of g(r)ij (and b(r)ij ). When the variance vanishes, the eigenvector is well
approximated by its expectation and we conjecture it is isolated. On the con-
trary, when the variance diverges it is because it gets asymptotically close
to the bulk of uninformative eigenvalues and is no longer isolated.

Let us �rst consider the eigenvector attached to λinfo,1:

E

[(
g(r)ij

)2
]
= (C.9)

1
λ2r

info,1
∑

(wx) : d(jk,wx)=r
k 6=i

W2
(jk)→(wx) + ∑

(vy) : d(jk,vy)=r
(vy) 6=(wx),k 6=i

σxσyW(jk)→(wx)W(jk)→(vy)

 .
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The �rst addend of (C.9) can be evaluated as done previously:

E

 1
λ2r

info,1
∑

(wx) : d(jl,wx)=r
l 6=i

W2
(jl)→(wx)

 = O

λ
↓|·|
1

(
MT(

√
cΦξ2, h)

)
λ2

info,1

r

.

If λ2
info,1 < λ

↓|·|
1

(
MT(

√
cΦξ2, h)

)
, this addend of diverges, and so does the

variance of g(r)ij : in this case, g(r) cannot be an approximate eigenvector of
Bξ,h. Consider next the second addend of Equation (C.9):

E

 1
λ2r

info,1
∑

(wx) : d(jk,wx)=r
l 6=i

∑
(vy) : d(jk,vy)=r

(vy) 6=(wx),k 6=i

σxσyW(jk)→(wx)W(jk)→(vy)


=

1
λinfo,1

∑
(wx) : d(jk,wx)=r

l 6=i

∑
(vy) : d(jk,vy)=r

(vy) 6=(wx),k 6=i

E[σjσxW(jk)→(wx) · σjσyW(jk)→(vy)]

≈ 1
λinfo,1

∑
(wx) : d(jk,wx)=r

l 6=i

E[σjσxW(jk)→(wx)] ∑
(vy) : d(jk,vy)=r

(vy) 6=(wx),k 6=i

E[σjσyW(jk)→(vy)]

≈ 1
λinfo,1

∑
(wx) : d(jk,wx)=r

l 6=i

E[σjσxW(jk)→(wx)] ∑
(vy) : d(jk,vy)=r

k 6=i

E[σjσyW(jk)→(vy)]

= E2
[

g(r)ij

]
,

where we exploited the fact that the paths (jk → wl) and (jk → vl) are
asymptotically independent and that the number of paths leading to nodes
a distance r from (jk) is exponentially large in r, unlike the number of paths
leading to (vy) from (jk). We thus obtain that the variance V[g(r)ij ] of g(r)ij
grows as

V
[

g(r)ij

]
= O

λ
↓|·|
1

(
MT(

√
cΦξ2, h)

)
λ2

info,1

r

. (C.10)

As a consequence, the variance of g(r)ij vanishes if and only if

λinfo,1 >

√
λ
↓|·|
1

(
MT(

√
cΦξ2, h)

)
.

Considering now the problem of evaluating the variance for all the {λinfo,i}i≥1

and {λuninfo,i}i≥1, note that, the variance is only determined by the �rst ad-
dend of Equation (C.9). This term does not depend on the con�guration σ

and is, therefore, the same for all the isolated eigenvectors. Consequently,
for all the isolated eigenvectors, the variance vanishes if the correspond-

ing eigenvalue is greater than Lξ,h =

√
λ
↓|·|
1

(
MT(

√
cΦξ2, h)

)
, which is
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Figure C.1: Overlap comparison of Algorithm 9.1, the dynamic adjacency matrix of
[KV20] (Dyn A), the dynamic non-backtracking of [Gha+16] (Dyn B)
and the static Bethe-Hessian of [DCT19] (Static BH). The title of each
row ant column indicates the values of η, k, Φ considered. For Φ 6= 1
a power law degree distribution is adopted. The vertical line indicates
the position of α/αc(T, η) = 1. For all simulations: c = 6, n = 25 000,
T = 4. Averages are taken over 10 samples.

precisely the radius of the bulk of Bξ,h, since an informative eigenvalue-
eigenvector pair (λinfo,i, gi), (resp. (λuninfo,i, bi)), for Bξ,h can only exist pro-
vided that λinfo,i (resp. λuninfo,i) is greater than Lξ,h, hence concluding the
justi�cation of Claim 9.2.

c.3 performance comparison
This section compares numerically the performance of Algorithm 9.1 against
the main spectral methods commented along Chapter 9. In Figure C.1 the al-
gorithms are tested for a di�erent number of classes, value of η and degree
distribution. For k > 2 a symmetric setting with classes of equal size and
Cab = cout for all a 6= b is considered, so that the spectral algorithm of
[Gha+16] is still well de�ned. Figure C.1 indeed con�rms that Algorithm 9.1
(i) bene�ts from high label persistence η; (ii) systematically outperforms
the two considered competing dynamical sparse spectral algorithms [KV20],
[Gha+16]; (iii) is capable of handling an arbitrary degree distribution.

To compare the performance of Algorithm 9.1 and the static Bethe-Hessian
of [DCT19], the case of small and large values of α should be treated sepa-
rately. Close to the transition, Algorithm 9.1 improves over the static Bethe-
Hessian and this gets more evident as η increases: the joint solution of the
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Figure C.2: Overlap averaged over time achieved by Algorithm 9.1 on graphs with
two communities of di�erent size, as a function of the ratio of the size
of the two communities. For this simulation n = 10 000, T = 5, c =
6, θ = 1n, η = 0.7. The second largest eigenvalue of CΠ is �xed to
λ↓2(CΠ) = 4. Averages over 15 samples.

problem at all times allows one to improve the clustering performance in
the hard detection regime. For large values of α, instead, there seems to
exist α∗(η) beyond which regularity only marginally improves the detec-
tion performance and Algorithm 9.1 performs equally (or slightly worse)
than the static algorithm of [DCT19]. Here, Algorithm 9.1 su�ers the sub-
optimal choices commented in Section 9.3 made to obtain a practical algo-
rithm achieving non-trivial reconstruction when close to αc(T, η). On the
opposite, the static Bethe-Hessian of [DCT19] is explicitly designed to opti-
mally perform community detection for all values of α and any degree dis-
tribution, thereby justifying the two curves for large values of α.

A last remark concerns the capability of Algorithm 9.1 to recover commu-
nities of unequal sizes. Figure C.2 shows the accuracy of reconstruction of
two communities of di�erent size, as a function of the size of the smallest
cluster over the size of the biggest. In order to obtain comparable results for
di�erent values of the ratio of the sizes of the two clusters, the following
strategy is adopted: let Π ∈ R2×2 be the diagonal matrix de�ned so that
Πii is the fraction of nodes belonging to class i (Tr(Π) = 1), CΠ12 = c1n.
For a given ratio Π11/Π22, the matrix C is constructed so to let the leading
eigenvalue of CΠ equal to c, and the second eigenvalue (which controls the
hardness of CD) equal to a �xed value. The overlap (averaged over time) is
then evaluated independently over the large and small class, to keep this
measure meaningful: in the case |Vsmall| � |Vlarge|, assigning all nodes to
the same cluster would output a large overlap.
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