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Abstract

•Problem: community detection in temporal graphs {Gt}t=1,...,T

•Goal: exploit time label correlation to improve clustering perfomance

•Technique: physics inspired approach for spectral clustering in sparse graphs

Dynamical Bethe-Hessian matrix for fast and improved community detection
down to the detectability threshold. Extension to arbitrary number of classes.

Model and notation (I)

Dynamical degree-corrected stochastic block model

• {Gt(Vt, Et)}t=1,...,T sequence of graphs with n nodes and k classes.

• η ∈ [0, 1] class label persistence

• `t ∈ {1, · · · , k}n label vector at time t. πp fraction of nodes with label p

∀ it+1 ∈ Vt+1, `it+1
=

{
`it w.p. η

a w.p. (1− η)πa

•C: class affinity matrix, Π = diag(π). C,Π ∈Mk×k.

•A(t), D(t) = diag(A(t)1) ∈Mn×n: adjacency and degree matrix of Gt.
•θ: node connectivity. θ ∈ Rn; 1

n1
Tθ = 1; 1

n1
Tθ2 = Φ = On(1).

• c = 1
n1

TA1 = On(1) average degree; CΠ1 = c1.

P(A
(t)
ij = 1) = θiθj

C`it,`jt
n

i.i.d across time

Dynamical detectability threshold (II)

For k = 2 communities of equal size: C`i,`j = cin if
`i = `j and cout otherwise, with λ = cin−cout

cin+cout
.

Non trivial reconstruction if and only if [1]

α :=
√
cΦλ2 > αc(T, η)
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•Large T and η improve performance

•Analytical expression of αc(T, η) up to T = 4, otherwise solved numerically

[1] Ghasemian et. al. – Detectability thresholds and optimal algorithms for community structure in dynamic networks (2016)

Dynamical Bethe-Hessian matrix (III)

Dynamical Bethe-Hessian matrix

•Let ξ, h ∈ (0, 1)

•Let φt=1 = φt=T = 1 and φt = 2, for all other t .

The dynamical Bethe-Hessian matrix Hξ,h ∈ RnT×nT is defined as

(Hξ,h)it,jt′ =


(
ξ2D(t)−ξA(t)

1−ξ2 + 1+h2(φt−1)
1−h2 In

)
ij

if t = t′(
− h

1−h2In
)
ij

if t = t′ ± 1,

Dynamical non-backtracking matrix

(Bξ,h)(ij)(kl) = δjk(1− δkl)×

{
ξ if (kl) spatial edge

h if (kl) temporal edge

Generalized Ihara Bass formula : if ∃ v s.t.Bξ,hv = v, then det[Hξ,h] = 0

Main result (IV)

Proposition: suppose the problem is above the detectability threshold

α > αc(T , η) and define ξ = λd = αc(T,η)√
cΦ

. Then, as n→∞
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Algorithm (V)

Input : adjacency matrices {A(t)}t=1,...,T of the undirected graphs {Gt}t=1,...,T ;
label persistence, η; number of clusters k.

•Compute λd and build Hλd,η

• Stack the m eigenvectors of Hλd,η with eigenvalue < 0 in of X ∈ RnT×m

•Normalize the rows of Xi,: ← Xi,:/‖Xi,:‖
•For each t, estimate community labels using k-means on the rows {Xit}i=1,...,n.

Return Estimated label vector ˆ̀∈ {1, . . . , k}nT .

Efficient Julia implementation at
lorenzodallamico.github.io/CoDeBetHe.jl

Performance (VI)

ov(`, ˆ̀) = max
¯̀∈P(ˆ̀)

1

1− 1
k

(
1

n

n∑
i=1

δ`i, ¯̀i −
1

k

)
,
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Research openings

•How to estimate η for all α > αc(T, η) ?

•Generalization to the case in which C,Π,θ also evolve through time

•Generalization to the case ofA(t) with additional informative edge dependences.

•Preliminary investigation in the supplementary material.


