
C O M P L E S S I TÀ
N E I S I S T E M I S O C I A L I

lorenzo dall’amico
ISI Foundation

Note per il corso in Fisica dei sistemi complessi

Università di Torino
April 24, 2024

Lorenzo Dall’Amico: Complessità
nei sistemi sociali

CONTENTS

1 temporal graphs 1
1.1 Why temporal graphs? . 1
1.2 Representing temporal graphs 2
1.3 Measuring proximity graphs 5
1.4 Properties of temporal graphs 8
1.5 Conclusion . 12
1.6 References . 12

2 epidemics on networks 13
2.1 Epidemics . 13
2.2 Epidemic modeling on networks 16
2.3 Extensions . 22
2.4 References . 23

3 cavity method 25
3.1 Sparse and tree-like graphs 25
3.2 Factorizing probability distributions on trees 27
3.3 The non-backtracking matrix 31
3.4 An application to epidemics 32
3.5 E�ciently computing the spectral radius of B 34
3.6 Conclusion . 35
3.7 References . 35

4 graph fourier transform 37
4.1 The Fourier transform . 37
4.2 The graph Fourier transform 38
4.3 Graph signal processing . 44
4.4 Conclusion . 48
4.5 References . 49

5 community detection 51
5.1 Community detection . 51
5.2 Optimization approaches . 55
5.3 Inference in the DCSBM . 59
5.4 Spectral clustering . 64
5.5 Conclusion . 75
5.6 References . 76

6 graph embeddings 77
6.1 Graph embeddings . 77
6.2 Word2Vec . 78
6.3 Node2Vec . 81
6.4 Conclusion . 82
6.5 References . 83

iii

ACRONYMS

F2F Face-to-face

ER Erdős-Rényi

NMF naïve mean �eld

BP belief propagation

SIR Susceptible-Infected-Recovered model

GW Galton Watson tree

GFT Graph Fourier transform

CD Community detection

AMI Adjusted mutual information

DCSBM Degree corrected stochastic block model

SC Spectral clustering

iv

SYMBOLS

• δa,b is the Kroeneker delta equal to 1 if a = b and equal to 0 otherwise.

• Λ(M) is the set of eigenvalues of a matrix M. λi(M) is the i-th (small-
est or largest, according to the context) eigenvalue of M

• The spectral radius of M (largest eigenvalue) is denoted with ρ(M).

• With the notation 1n we denote the all-ones vector of size n.

• The entry-wise Hadamard product is denoted with ◦.

• The set of the �rst n integers is denoted with [n].

• We adopt the Landau notation for the asymptotic behavior of variables.
In particular x = On(y) is equivalent to limn→∞

x
y = c for some �nite

c. The notation x = on(y) instead means limn→∞
x
y = 0.

• The set of neighbors of a node i on a graph is ∂i = {j ∈ V : Aij = 1}

v

1
TEMPORAL GRAPHS

1.1 Why temporal graphs? . 1
1.2 Representing temporal graphs 2
1.3 Measuring proximity graphs 5
1.4 Properties of temporal graphs 8
1.5 Conclusion . 12
1.6 References . 12

1.1 why temporal graphs?
Graphs are an essential mathematical tool to represent interacting systems.
When using static graphs, the interactions between two nodes is often rep-
resented as a single Boolean variable determining whether or not those two
nodes interacted with one another. Yet, we can think of many examples in
which this variable should depend on time. Think of a graph in which an
interaction between two people is a phone call. In most instants, for most
people, no interactions are recorded at all, and, in all cases at most one in-
teraction per time may occur. So, how would we determine the Boolean in-

A pictorial
representation of a
chain of calls

teraction variable? One approach would be to aggregate time as determine
that two people interacted if they had enough phone calls during a speci�c
time window. In this way, connections are created between people that fre-
quently call each other, but we loose an important piece of information: the
order of events. Imagine an event like the �re of Notre Dame de Paris: in
few moments people witnessing the �re spread the news to their contacts
who, themselves reported to others in chain. If we had no idea of what hap-
pened and what is the content of the calls or messages, we could actually
retrieve the geographical location from which the burst of information was
initiated by retracing backwards the chain of events. If instead we use a static
representation of the graph as we did earlier, all this information would be
lost. A temporal graph is then an object capable of representing the interac-
tions between the elements of a system together with a time stamp. Besides
communication graphs, other notable examples are face-to-face proximity
graphs, biological graphs, ecological graphs and many others.

As we will show in the remainder, in some cases it is necessary to keep
the temporal dimension into account if one wants to understand the process
happening on top of a graph. This is due to the fact that links may have

1

2 temporal graphs

Figure 1.1: A pictorial representation of a temporal graph. (a) A graph with 4
nodes with V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 3), (2, 4)}. (b)
the temporal activation patterns of each edge (with color code). The x
axis represents time. Picture taken from Gauvin et al., Randomized refer-
ence models for temporal graphs.

a causal relation (like the phone calls in the Notre Dame example) or sim-
ply because the aggregated static graph may be non representative of the
interactions at any time stamp. We will then discuss how to mathematically
de�ne and represent temporal graphs, a relevant example of how to measure
them and show some peculiar properties of temporal graphs.

1.2 representing temporal graphs
Let us consider a set of nodes V and a set of edges E connecting the nodes.
Given a suited de�nition of interaction for our problem and a time window,
E is the set of all pairs of nodes (i, j) that interacted at least once in the
considered time window. We now want to add the notion of when these in-
teractions occurred. Each edge (i, j) can appear multiple times and for each
interaction we can consider a time t at which the interaction begun and a
time duration τ.1 We can then represent a temporal graph as a sequence of
temporal edges in the form (i, j, t, τ). Figure 1.1 gives a pictorial representa-
tion of the temporal edges of a graph with 6 nodes. We now provide a more
formal de�nition of a temporal graph.

1 We could equivalently replace τ with the time te at which the interaction ended.

1.2 representing temporal graphs 3

Temporal graphs

A temporal graph is a tuple G(V , Et), where V denotes the set of
n nodes and Et of temporal edges. Each e ∈ Et can be written as
(i, j, t, τ) where i, j ∈ V , t is a time-stamp and τ ∈ R+ is a positive
interaction duration, implying that the link between i and j was active
from t to t + τ. If a node has at least one connection at time t we say
it is active at time t and it is inactive otherwise.

Temporal graphs

One can generalize the concept of adjacency matrix to the temporal set-
ting by letting

Temporal adjacency
matrixÃ(t)

ij =

1 if ∃ e = (i, j, t0, τ) ∈ Et s.t. t ∈ [t0, t0 + τ]

0 else.

In this representation, however, time is kept as a continuous variable and,
even for a �nite observation time, we obtain an in�nite number of adjacency
matrices. For this reason, the snapshot representation – that uses a discrete
notion of time – may be more suited. In particular, we assume that the inter-
action duration τ is a multiple of a unit ∆t that sets the temporal resolution
of the graph. Let us de�ne the concept of snapshot graphs, pictorially visu-
alized in Figure 1.2.

Figure 1.2: A pictorial representation of a snapshot graph. This plot represents
the same graph of Figure 1.1 in which time was already discretized for
convenience. Each slice corresponds to a di�erent time step in which
the edges progressively are activated. Picture taken from Gauvin et al.,
Randomized reference models for temporal graphs.

4 temporal graphs

Snapshot graphs

A snapshot graph is a tuple G(V , Et), where V denotes the set of n
nodes and Et of temporal edges. Each e ∈ Et can be written as (i, j, t)
where i, j ∈ V , t is a discrete time-stamp and models an instantaneous
interaction between i, j at time t.

Snapshot graphs

With this representation at hand, one can obtain the adjacency matrix
representation of a temporal graph as follows

The snapshot
adjacency matrix

A(t)
ij =

1 if (i, j, t) ∈ Et

0 else.

In this way we obtain a sequence of T adjacency matrices {A(t)}t∈1,...,T ,
where T is the total number of snapshots. A natural question that poses is
how which of the two representations is more appropriate and how much
information is lost when choosing to discretize time. We address this point
in the following remark.

Discretizing time

The coupling
between the process
and graph dynamics

Discretizing time

If we want to choose a discrete representation of time, the natural
questions that arise are how to choose ∆t, the minimal interaction
duration and how much do we loose in performing this simpli�ca-
tion. The �rst point we want to raise is that any measured quantity
(including time) is not truly continuous and it is bounded by a resolu-
tion that makes time discrete by design. So, in all cases, one can say
∆t is the measurement instrument resolution and the snapshot rep-
resentation is always appropriate. Yet, if ∆t is much smaller than the
total observation time, the number of time frames T – even if �nite –
will tend to be very large, hence untractable. So, setting a longer ∆t
might be more appropriate in some cases and the choice of a good ∆t
is necessarily problem-dependent because ∆t determines the scale at
which we consider interactions to be simultaneous.

Let us make two examples to make this point clearer. Suppose we
have two spreading phenomena: in one case the propagation of a
piece of information (such as the �re of Notre Dame) and in the other
a �u-like illness transmission. In the former case, the propagation of
the information from one person to the other moves very fast and
so ∆t must be small, in the order of seconds/minutes to capture the
rapid dynamics of the news propagation. If we consider the �u-like
propagation, instead, we know that a person, after being infected, is
not typically able to infect someone for a couple of days, hence we
can set ∆t of the order of one day, assuming that one cannot change
its own infectious state in the course of a day. So, summarizing, the
proper time aggregation depends on the time-scale of the dynamic

1.3 measuring proximity graphs 5

process happening on top of the graph. If this process if much slower
than the temporal evolution then we can simply aggregate the graph.
If instead the two time scales (of the process and of the graph evolu-
tion) are similar, then we have an interesting coupling that must be
taken into account.

To conclude this remark, there is still a quantity we want to preserve
when we aggregate time, that is the cumulative interaction duration:
what do we do with all interactions so that τ < ∆t? Also in this
case the answer depends on the problem under consideration. Take
for instance the �u propagation with a time aggregation of 24 hours.
If an infectious individual has a interaction with a susceptible one,
the interaction duration is key to determine the probability of infec-
tion: an hour-long interaction is much more likely to propagate the
disease than a minute-long interaction and all interactions will be
shorter than ∆t in this case. To preserve this piece of information,
we might want to associate a weight to each edge, representing the
cumulative interaction duration. We relate the continuous time and
snapshot adjacency matrices as follows

W(t)
ij =

∫ t+τ0

t
dt′ Ã(t′)

ij .

If this representation may seem very reasonable, it must be noted
that is not the only admissible one: in the case of the propagation of
sexual diseases, for instance, the interaction duration is not relevant
and may simply want to keep a Boolean representation of the edges,
without attributing any weight.

The weighted
aggregated graph

Now that we have introduced some of the main concepts related to tem-
poral graphs, let us consider the speci�c set of proximity graphs as a case
study, �rst describing a method to measure these graphs and then using the
open source, real data to describe some relevant properties.

1.3 measuring proximity graphs
In proximity graphs the edges represent a Face-to-face (F2F) contact between
two persons. The interest of this type of graphs resides in the fact that F2F
interactions are the vehicle of human communication and of infectious dis-
eases and, more generally, they quantify how humans interact with one an-
other. Measuring Face-to-face (F2F) proximity graphs is, however, a very chal-
lenging task. Among the most used approaches to quantify them we have
the use of questionnaires in which the interactions one has are self-reported.
It was shown that this method is biased towards long interactions – in the
sense that short interactions tend to be forgotten – and can achieve a low
temporal resolution. A very important contribution to the �eld of measur-

6 temporal graphs

Figure 1.3: Pictorial example of the use of SocioPatterns proximity sensors.
Six people in a room wearing a proximity sensor. The orange ones (with
the line), indicate a recorded F2F interactions between two individuals.
Picture taken from http://www.sociopatterns.org/.

ing F2F proximity graphs was made with the creation of the SocioPatterns
collaboration by the ISI Foundation.

The SocioPatterns
collaboration

A proximity sensor

SocioPatterns was formed in 2008 and developed wearable proximity sen-
sors that are capable to measure temporal proximity graphs. Their function-
ing is based on the transmission and exchange of information packets using
radio-frequency electromagnetic waves. Brie�y speaking, each device is as-
sociated with a code and continuously switches from a listener to a speaker
mode. When it is in the speaker mode it emits an information packet con-
taining its own code and the power at which the signal was emitted. When
it is in listener mode, instead, the device intercepts the packets emitted by
the “speakers” and records on its memory the code and the power declared,
the time stamp at which this interaction occurs as well as the power of the
received signal. The devices have to be worn on the chest of the participants
and, by design, record F2F proximity. Figure 1.3 shows a demo of the func-
tioning of the SocioPatterns proximity sensors.

Inside the memory of each sensor we then have a list of entries of the
type (j, powtr, powrec, t), where j is the code of the sensor that emitted the
signal, powtr is the transmission power, powrec is the received power and
t is the time-stamp that has a temporal resolution of 20 seconds. Looking
at the di�erence powtr − powrec one can measure the attenuation of the
signal and �lter out the interactions that are too attenuated, thus keeping
only those that happened at a distance within approximately 2 meters. From
this we can create a snapshot graph with ∆t = 20 s as described above.

The SocioPatterns sensors have been used in several contexts, including
schools, hospitals, o�ces and rural African villages among others. They con-
stitute a well known benchmark of temporal graph measurement that has

http://www.sociopatterns.org/
http://www.sociopatterns.org/
https://isi.it/en/home

1.3 measuring proximity graphs 7

Figure 1.4: The School dataset. Pictorial representation of the School dataset (see
Table 1.1) aggregated over all the observation time. The size of each node
is the determined by the total interaction time of that node, while the
color is determined by the class the student belongs to.

been used in many applications and many of the collected datasets are pub-
licly available at http://www.sociopatterns.org/datasets/. We will make use
of some of these data to study some relevant properties of temporal graphs.
Table 1.1 summarizes some descriptive properties of the considered graphs,
while Figure 1.4 shows the aggregated graph collected in a high school.

Name n Observation time Description

School 180 from a Monday to the Tuesday
of the following week in
November 2012.

interactions between students
in a high school in Marseilles,
France belonging to 5 classes.

O�ce 92 June 24 to July 3, 2013 interactions between
individuals measured in an
o�ce building in France

Village 86 between 16th December 2019
and 10th January 2020

interactions between the
people of Mdoliro village in
Dowa district in the Central
Region of Malawi.

Conference 405 June 4-5, 2009 interactions at the SFHH
conference in Nice

Table 1.1: Summary statistics of the SocioPa�erns temporal networks. The
�rst column indicates the name used in these notes. The column indexed
by n indicates the number of nodes appearing in the graph. The column
Observation time describes the experiment duration, while Description
provides a few details on the context of the data collection. For more in-
formation, refer to the SocioPatterns website.

http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/

8 temporal graphs

Figure 1.5: Time respecting paths. Five snapshots of a temporal graph in which
unoccupied nodes are depicted in orange at each time, while the cur-
rently occupied node is in blue. A larger width is used to highlight the
edge that causes the transition.

1.4 properties of temporal graphs
We now proceed to describe some important concepts that characterize tem-
poral graphs and use the four aforementioned datasets to show them on
empirical data.

time-respecting paths

When we consider a graph G(V , E), we de�ne a path on it as an ordered
sequence of nodes {i1, i2, . . . , iT} for that, for all p ∈ [T], ip ∈ V and for
all p ∈ [T − 1], (ip, ip+1) ∈ E . In words, every step of a path allows one to
only move from a node to one of its neighbors. When we consider a temporal
graph, instead, we must generalize the concept of path, to encode the role
played by time, introducing the time-respecting paths.

Time respecting paths

Given a temporal graph G(V , Et), we denote a time respecting path
as {i1(t1), i2(t2), . . . , iT(tT)} if it satis�es the following conditions

• For all p ∈ [T], ip ∈ V : the path is de�ned on the graph nodes.

• For all p ∈ [T − 1], tp < tp+1: these two times indicate the
beginning of the residency on the respective nodes and time
must be increasing.

• For all p ∈ [T − 1], ∃ t0, τ s.t. (ip, ip+1, t0, τ) ∈ Et and tp+1 ∈
[t0, t0 + τ]: the transition between one node and the other can
only take place at a time at which the two nodes are connected.

Time respecting
paths

This de�nition is given for a continuous time representation but it can
simply be adapted to the discrete one. For this case, we give a simple repre-
sentation of a time respecting path in Figure 1.5.

1.4 properties of temporal graphs 9

0 1 2 3 4 5 6 7

0.00

0.25

0.50

0.75

1.00
Re

ac
ha

bi
lit

y

Conference

0 1 2 3 4 5 6 7

0.00

0.25

0.50

0.75

Office
temporal
aggregated

0 2 4 6
log(t)

0.00

0.25

0.50

0.75

1.00

Re
ac

ha
bi

lit
y

School

0 2 4 6
log(t)

0.0

0.1

0.2

0.3

0.4

Village

Figure 1.6: Time-respecting vs aggregate reachability. Each plot refers to one
of the 4 SocioPatterns datasets described in Table 1.1, considering the
�rst 8 hours of measurements. The red dashed line is the average of
the reachability matrix Rt de�ned in Equation (1.1) as function of time,
using for all t At the weighted aggregated matrix over all the observation
period. The blue continuous line, instead, is obtained from the snapshot
adjacency matrices and encodes time-respecting paths.

Given a sequence of adjacency matrices, we now de�ne the reachability
matrix Rt as follows

Reachability matrixRt = sign

[
t

∏
t′=1

(At′ + In)

]
, (1.1)

where In is the identity matrix, the sign function has to be considered
entry-wise, while the product has to be taken from right to left, i.e.∏3

t=1 At =

A3 A2 A1. The entry Rt,ij equals 1 if there exists a time-respecting path of
length smaller or equal to t that allows one to go from i to j.

Time-respecting
paths are not
symmetric

An important fact related to this matrix is that it is not necessarily sym-
metric. This comes from the fact that the product of matrices (such as the
At’s) is symmetric only if the matrices commute. This is not the case in gen-
eral and it implies that if there is a time-respecting path from i to j, that does
not imply that there exists also a time-respecting path from j to i.

By taking the average of the reachability matrix, we also have a measure
of how well its nodes are connected. Figure 1.6 compares the reachability on
the 4 real temporal graphs described above with the one obtained on their
aggregated version and clearly shows that temporal graphs have a lower
reachability. This is because the valid time-respecting paths are constrained

10 temporal graphs

0 2 4 6
log()

10

8

6

4

2

0

lo
g(

1
cd

f)

School
Conference
Office
Village

0 2 4 6
log(inter)

8

6

4

2

0

lo
g(

1
cd

f)

Figure 1.7: Event and inter-event duration distributions. The �gures show the
scatter plot in log-log scale of the interaction duration (left) and inter-
event duration (right) distributions vs the 1− cd f , i.e. the complemen-
tary of the cumulative density function. Each line refers to one of the
datasets described in Table 1.1 and is color and marker coded.

and are only a subset of all the possible paths that one can perform on the
aggregate version of the graph. This is an important ingredient to consider
when coupling a dynamic process with the graph, because only a fraction of
all possible paths can actually take place.

duration distribution and burstiness

1− cdf(x) =
P(τ ≥ x)

We now focus on a very peculiar aspect of contact graphs, that is the con-
tact duration distribution. It has been observed in many instances (with no
apparent exception) that this distribution is very broad and follows approxi-
mately a power law decay that appears to be a universal behavior. Figure 1.7
(left plot) shows in log-log scale 1 minus the cumulative density function
vs the interaction duration and con�rms this trend, since the relation is ap-
proximately linear in the logarithmic scale. This is an important observation,
because it tells us that very long interactions are much more common than
what we would expect for a thin tail distribution, such as the Poisson. The
consequence is that, if we have a process that needs a minimal time of in-
teraction to consider the interaction to be valid, then, in practice, even if
the threshold is very large, there will be valid interaction edges with high
probability. On the other hand, we also know that most of the distribution
is concentrated around small values.

A similar behavior is observed for the inter-event duration distribution.
We de�ne the inter-event duration as the time elapsed between two succes-
sive interactions of the same pair of nodes (ij). Since this distribution is
broad, we say that the interaction dynamics is bursty, i.e. that typically we
have an alternation of time intervals in which the activity is very low and
some in which it is very high. To best understand the e�ect that a bursty
dynamics may have on a process, let us consider the following example.

Suppose we have a quantity Q that is increased by one unit every time
there is a interaction and it is decreased by a factor α for each time step in
which no interaction occurs. If Q exceeds a threshold value Qth, then some

1.4 properties of temporal graphs 11

0 500 1000 1500 2000 2500

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(a)

0 500 1000 1500 2000

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

(b)

0 500 1000 1500 2000 2500
time

0

10

20

30

40

50

60
(c)

0 500 1000 1500 2000 2500
time

0

10

20

30

40

50

60

(d)

Figure 1.8: The e�ect of bursty dynamics. The �rst row represents a temporal
time series for (a) a Poisson process and (b) the interaction times of a
node of the Conference graph (see Table 1.1. Each horizontal line indi-
cates an active time. The second line displays the dynamics of a quantity
Q evolving according to the process described in the main text for (c)
the Poisson dynamics of (a), and for (d) the bursty dynamics of (b). The
horizontal dashed line indicates an arbitrary selected threshold value
that triggers some process when Q > Qth. Image adapted from Holme,
Saramaki, Temporal networks.

process is triggered otherwise it is not. In Figure 1.8 we compare this dynami-
cal process on a Poisson temporal series made of 362 interaction events with
one extracted from an individual activity pattern of the Conference graph.
The bottom plots clearly evidence that the bursty dynamics, being highly
concentrated in some time regions, allows one to go beyond the threshold
several times, while this does not happen to the Poisson distribution.

A method to measure the burstiness level of a time series is as follows

B =
s−m
s + m

,

where s and m are the standard deviation and mean of the inter-event
duration distribution, respectively. For a periodic process, s = 0 and B =

−1, while for the burstiest of processes, s → ∞ and B → 1. In our case,
the Poisson dynamics of Figure 1.8(a) has B = −0.45, while the one of
Figure 1.8(b) has B = 0.70.

12 temporal graphs

1.5 conclusion
Temporal networks are a powerful tool to model complex dynamical systems.
Empirical networks often show very broad distribution of the interaction du-
ration as well as bursty dynamics. These features are of great importance to
some dynamical processes that may unfold on networks and the temporal
framework is a relevant generalization of static graphs. However, the dy-
namic component of graph evolution must always be compared with the
typical time scale of the process unfolding over the graph in order to under-
stand whether it is necessary to have an additional layer of complexity given
by time or, more in general, to choose an appropriate time discretization to
perform the analysis.

1.6 references
• P. Holme, J. Saramäki, Temporal networks. Physics reports, 519(3), 97-

125 2012.
This is the reference for an introduction to temporal graphs.

2
EP IDEMICS ON NETWORKS

2.1 Epidemics . 13
2.1.1 Epidemic modeling 13
2.1.2 The epidemic threshold 14

2.2 Epidemic modeling on networks 16
2.2.1 The state evolution equation 16
2.2.2 Naïve mean �eld . 17
2.2.3 The reproductive number with naïve mean �eld . . . 18
2.2.4 Graph structure and reproductive number 19
2.2.5 From theory to practice: epidemic mitigation 21

2.3 Extensions . 22
2.4 References . 23

2.1 epidemics
Epidemiology is a branch of science that studies the determinants, distri-
bution and dynamics of a propagation process in a population. Given its
relation to a whole population, epidemiology is, by design complex and of
great interest when shaping public health policies. We will focus on infec-
tious disease epidemiology, i.e. on illnesses that can be transmitted from one
person to the other. Notable examples include the bubonic plague, smallpox,
the Spanish �u, HIV, in�uenza and, of course, Covid. Even though we will
mainly have in mind “illness” propagation, a similar if not identical math-
ematical framework can be adopted to anythings that propagates through
interactions, such as opinions, computer viruses or information.

Let us now describe in deeper detail some fundamental elements of epi-
demics and their modeling.

2.1.1 epidemic modeling
The basic medical observation that we want to model and capture is that
when a person is “sick” – for instance it is positive to in�uenza – and it
is in contact with a person who is not – and never was – then it can pass
the infection over to the healthy person. The meaning of “contact” depends
on the disease we are considering: think to the extreme di�erence there

13

14 epidemics on networks

Figure 2.1: The deadliest pandemics in history.
Source: visualcapitalist.com/history-of-pandemics-deadliest

is between the HIV and the �u transmissions. Nonetheless, the dynamic
processes we have in mind are very similar. We introduce the Susceptible-
Infected-Recovered model (SIR), a cornerstone of epidemic modeling.

We de�ne three possible states every individual can be in: S, susceptible;
I, infected; R recovered. Susceptible people are healthy individuals that can
contract the disease. Infectious ones are those who currently carry the dis-
ease and can spread it out when they interact with a susceptible individual.
The recovered people, instead, are those who used to be infectious and now
can no longer be infected. There are two important parameters that take part
to this model: β that is the probability per unit time to infect a susceptible
person and µ, the probability per unit time to recover. We can summarize
the SIR model with the following equation

The SIR model

S + I
β−→ 2I

I
µ−→ R

The parameters β, µ are disease-dependent and tell us how easily the in-
fection runs across the population. Intuitively, if β� µ we are in a situation
in which people get infected at a much faster pace than they recover. As a
consequence, the epidemic will swiftly spread across the population. On the
opposite, if µ � β people simply recover very quickly and the epidemic
dies out. This concept, that we delineated in intuitive terms, is the so-called
epidemic threshold that determines the necessary and su�cient condition
for an epidemic spreading to occur and that we now more formally de�ne.

2.1.2 the epidemic threshold
We consider a population in which everybody is susceptible. This condition
is a stationary state, because no infection can occur among susceptible peo-
ple, or, in other words

S + S −→ 2S.

https://www.visualcapitalist.com/history-of-pandemics-deadliest/

2.1 epidemics 15

Figure 2.2: Epidemic threshold phase diagram. Below the critical value of R0
we are in an absorbing phase in which there is no epidemic, while for
R0 larger than the critical value, the probability that each node has of
being infected is non-null. Source: Satorras, Castellano, Van Mieghem,
Vespignani. Epidemic processes in complex networks.

We now perturb this state introducing few infectious individuals and ask
ourselves whether the system will fall back to an equilibrium having most
people being una�ected by the disease, or, if it will spread hitting a large
portion of the population. The simple approach to understand this problem
lies in the following question

The e�ect of R0,
some numbers
Source:visualcapitalist.com/history-
of-pandemics-
deadliest/

At the beginning of the spreading,
how many people do I infect before recovering?

If the answer is “more than one”, then we have a cascade in which the prop-
agation grows exponentially fast. If, on the opposite it is “less than one” than
it dies out because, in most cases, every individual recovers before infecting
someone else. We call this the reproductive number. As shown in Figure 2.2
it is the control parameter of a phase transition between a disease-free and
an epidemic state.

Let us stress two important facts. The �rst one is that R0 is de�ned at the
beginning of the epidemic. Notation-wise, this is why we call it R0, while Rt

is the reproductive number at a given time t. This is important to say because
the exponential spreading can occur only on a short time scale and then
saturate due to the �nite population size. The second fact is that the question
refers to a non-better speci�ed “I”, implying that the answer is the same
for everybody. Of course, if we think of our everyday life, the probability
of infection vary a lot across individuals, according to their sociability, the
interaction with children, the spaces they occupy etc. So, of course, we want
an average answer and we will study it in the next section.

https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/

16 epidemics on networks

2.2 epidemic modeling on networks
As we mentioned, the epidemic spreading propagates through contacts that
are well modeled by the edges of a graph. We now want to formally de�ne
the epidemic threshold transition for an arbitrary graph. This is of key im-
portance to understand if, given the structure of the network and the disease
parameters, the spread will touch a large fraction of individuals or not.

2.2.1 the state evolution eqation

We consider an agent-based model in which every individual i ∈ V is asso-
ciated to a discrete variable xi(t) ∈ {S, I, R} determining the state i is in.
When a susceptible person i is in contact with an infectious one j (Aij = 1)
for a time dt, then it gets infected with a probability βdt. An infected per-
son recovers with a probability µdt. We can write the probability of being
infected at the time-step t + dt as a function of t as follows:

The infected state
equation of the SIR on

a graph

P(xi(t + dt) = I) = E

[
δ[xi(t) = I](1− µ)︸ ︷︷ ︸

i was infected and did not recover

+ δ[xi(t) = S]

(
1−∏

j∈V

(
1− βdt · δ[xj(t) = I]

)Aij

)
︸ ︷︷ ︸

i was susceptible and got infected

]
. (2.1)

This equation features two terms: the case in which i was susceptible and
got infected and the can in which it was infected and did not recover. Note
that the probability of being infected is written as 1 minus the probability
of not being infected. We can simplify this equation in the limit for dt→ 0,
focusing on the term describing the probability of not being infected.

lim
dt→0

∏
j∈V

(
1− βdt · δ[xj(t) = I]

)Aij

(a)
= lim

dt→0
exp

{
∑
j∈V

Aijlog
(
1− βdt · δ[xj(t) = I]

)}
(b)
= lim

dt→0
exp

{
−βdt ∑

j∈V
Aijδ[xj(t) = I]

}
(c)
= lim

dt→0
1− βdt ∑

j∈V
Aijδ[xj(t) = I],

2.2 epidemic modeling on networks 17

where in (a) we used the identity x = elogx; in (b) we performed the
expansion log(1 + x) = x + o(x) and in (c) the expansion ex = 1 + x +

o(x). Substituting this expression in Equation (2.1) we obtain

P(xi(t + dt) = I) = E [δ(xi(t) = I)] (1− µ) + βdt ∑
j∈V

AijE
[
δ[xi(t) = S]δ[xj(t) = I]

]
= P (xi(t) = I) (1− µ) + βdt ∑

j∈V
AijP

(
xi(t) = S, xj(t) = I

)
.

Taking the �rst term on the right hand-side to the left and dividing by dt,
we obtain the derivative of the probability that reads

∂tP(xi(t) = I) = β ∑
j∈V

AijP
(

xi(t) = S, xj(t) = I
)
− µP(xi(t) = I).

(2.2)

Following the same passages, we get the evolution equations for all three
states. Note that, ∂tP(xi(t) = S) + ∂tP(xi(t) = I) + ∂tP(xi(t) = R) = 0,
because the probability of being in one of the three states sums up to one.

SIR model on a graph

∂tP(xi(t) = S) = −β ∑
j∈V

AijP
(
xi(t) = S, xj(t) = I

)
∂tP(xi(t) = I) = β ∑

j∈V
AijP

(
xi(t) = S, xj(t) = I

)
− µP(xi(t) = I)

∂tP(xi(t) = R) = µP(xi(t) = I). (2.3)

In order to obtain the reproductive number we must study the stability of
this system of equations that, however, is still non-linear and hard to study
because it involves the marginal distributions P

(
xi(t) = S, xj(t) = I

)
for

which we do not have an explicit expression. To cope with this problem, we
adopt the simple naïve mean �eld approximation.

2.2.2 naïve mean field

The naïve mean �eld (NMF) approximation consists in considering all vari-
ables as independent i.e. in factorizing the marginals as follows

The NMF

approximation
P(xi(t) = S, xj(t) = I) = P(xi(t) = S)P(xj(t) = I).

This approximation greatly simpli�es the problem. In fact, in (2.3) we have
de�ned the evolution of 3n equations concerning the node marginal prob-
abilities, but there are 2|E | equations (where E is the set of edges) that are
unspeci�ed. Factorizing the probabilities with naïve mean �eld, we simply
get rid of these terms. Let us �rst make some comments about this approxi-
mation, its limits and when we expect to be a good method to proceed.

18 epidemics on networks

Some notes on the naïve mean �eld approximation

Given its simplicity NMF is a commonly adopted strategy to �rst
tackle a problem, but is it accurate? In other words, we are asking
to what extent we can assume that the event that i is susceptible is
independent from the event that its neighbor j is infected. Given the
context of the model, the answer seems necessarily to be negative
since the contagion is transmitted through the contacts.

The most relevant setting in which NMF should be considered is that
of dense networks, i.e. those in which every node has a large degree.
Suppose we have a fully connected network: the fact that the edge
Aij exists is simply irrelevant because all edges exist. One can show
that indeed, in this setting the NMF approximation becomes asymp-
totically exact and, in general, the denser the network is the more
the NMF approximation is accurate. An example of how to go beyond
this approximation is discussed in chapter 3.

With NMF approximation at hand, Equation (2.2) turns into

∂tP(xi(t) = I) = βP(xi(t) = S) ∑
j∈V

AijP(xj(t) = I)− µP(xi(t) = I).

We now linearize this equation around the stationary state P(xi(t) =

S) = 1 to get the reproductive number.

2.2.3 the reproductive number with naïve
mean field

As we explained before, we want to see the e�ect of perturbing the station-
ary state in which everybody is susceptible by adding a small probability of
being infected. For simplicity, we denote P(xi(t) = I) := pi(t) and move
to a vector form of the equations. We let Pi(xi(t) = S) = 1 and obtain

The linearization
around the

diseases-free point
under the NMF

approximation

∂t p(t) = (βA− µIn)p(t).

If we want that ∂t pi(t) < 0 for all i and all t, we must impose that βρ(A)−
µ < 0, where ρ(A) denotes the spectral radius of A. If this condition is sat-
is�ed, then we end up in the disease-free region. If on the opposite βρ(A)−
µ > 0, the probability of being infected grows at each time step and the
virus has a broad di�usion on the network. We thus obtain the following
value for the reproductive number

Reproductive number with the NMF approximation

R0 =
βρ(A)

µ
(2.4)

2.2 epidemic modeling on networks 19

0.5 1.0 1.5 2.0 2.5
R0 = (A)/

0.0

0.1

0.2

0.3
Bu

rd
en

0.50 0.75 1.00 1.25 1.50 1.75
R0 = (A)/

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 2.3: Epidemic threshold: theoretical prediction versus simulated data.
We run a SIR model for di�erent β values on a dense graph (left panel)
and on a sparse one (right panel) generated from the random con�g-
uration model. We plot the burden (i.e. the fraction of non-susceptible
individuals) as a function of R0 as predicted by the NMF approximation.

In Figure 2.3 we compare this prediction with an empirical simulation on a
dense (left panel) and on a sparse one (right panel), evidencing the goodness
of the approximation only in the former case. Now, as a last step, we give
some simple results relating the spectral radius of A with its structure.

2.2.4 graph structure and reproductive
number

Studying the spectral properties of the adjacency matrix for di�erent gen-
erative models is a problem of great interest, that however goes beyond the
scope of this course. Here we provide two simple examples with intuitive and
non-rigorous arguments to characterize the value of ρ(A) and understand
the role of density and degree heterogeneity in determining the threshold.

Erdős Renyi random graph

x1

d

The leading
eigenvalue of A, x1
against the degree
vector on a random
dense graph

The spectral behavior of the Erdős-Rényi (ER) random graph changes dramat-
ically according to whether its expected average degree grows with its size
or not. Letting p be the probability of being connected, then we can de�ne
two di�erent regimes: the dense one in which log(n)/pn = on(1) and the
sparse one in which the opposite is true, i.e. pn/log(n) = on(1). In words,
if the average degree grows faster than log(n) we say the network to be
dense. This is a game-changer because, under this hypothesis, the degree
distribution is concentrated, i.e. , for all large n, with probability one

max |di − np| = on(np).

20 epidemics on networks

1 2 3 4 5 6
log(h)

4

2

0

2

4

lo
g(

i)

Figure 2.4: Hitting time as a function of the expected degree. We consider a
random graph generated from the con�guration model and denote with
θi the expected degree of node i. In the plot we show the scatter plot of
θi against the hitting time h, de�ned as the number of iterations after
which the node got infected in a SIR simulation.

Again, in words, this means that a dense ER graph is quasi regular. In this
case, we can heuristically1 write the following equation

(A1n)i = ∑
j∈V

Aij = di ≈ np ≈ 〈d〉(1n)i.

This implies that 1n is a close approximation of the leading eigenvector2

ρ(A) = 〈d〉+ on(d)
on dense ER graphs

and the average degree is an approximation of ρ(A). From this result, we
obtain that in denser networks an epidemic spreading runs faster, as one
could reasonably expect.

Let us now consider the case in which the graph is generated from a con-
�guration model with an arbitrary degree distribution.

Con�guration model

Once again we operate under the assumption of being in a su�ciently dense
regime and derive a heuristic expression of the leading eigenvector of A,
which we suppose in this case to be d, the degree vector.

ρ(A) =
〈d2〉
〈d〉 + on(d)

for dense random
graphs with an
arbitrary degree

distribution

(Ad)i = ∑
j∈V

Aijdj ≈ ∑
j∈V

did2
j

2|E | = di
〈d2〉
〈d〉 .

We thus get that ρ(A) = 〈d2〉/〈d〉 implying that a broad degree distribution
makes the spreading run even faster on the network. This is because of the

1 For simplicity we derive this result heuristically, but it can be formally proved.
2 Due to Perron-Frobenius theorem.

2.2 epidemic modeling on networks 21

role played by hubs, i.e. nodes with a high degree. Since they have a lot of
connections, they are very likely to get infected in the earlier stages of the
epidemic and then become super-spreaders. Notably, the value of ρ(A) that
we just may diverge for scale-free networks in which the second moment
of the degree distribution goes to in�nity, making the transition go to zero.
Figure 2.4 shows for each node the infection hitting time (i.e. the time it takes
to get infected) as a function of their degree. The plot evidences a strong
negative correlation, con�rming the intuition that nodes with a large degree
are the �rst to get infected and then they are responsible of the spreading.
Note that in practice the second moment of the degree may only diverge in
the asymptotic theoretical limit. All real world networks are �nite and so
is 〈d2〉. Nonetheless, in real-world settings, it can be overwhelmingly large
and drive the epidemic to unfold very fast on the network.

2.2.5 from theory to practice: epidemic
mitigation

Let us now discuss some basic facts about epidemic mitigation based on our
results. Suppose we have a vaccine and we add a fourth compartment to our
model, that of vaccinated people that behaves exactly like the recovered one.
From our analytical view-point, we can still deploy the results we obtained,
because vaccinated people simply do not take part to the process, since they
cannot change their compartment. For this reason it is as if they were not
part of the network.

We ask ourselves how vaccination impacts the epidemic spread. To an-
swer this question we add a Boolean variable si the equals 0 if i is vacci-
nated and cannot transmit the disease and is 1 otherwise. The matrix that
determines the epidemic threshold is then now

W = A ◦ (ssT).

Using a non-rigorous argument, we will see how the vaccination deter-
mines the epidemic threshold.

Methodological remark

The approach we used to study ρ(A) was non rigorous but leads to
the correct result because we assume A to be dense. By vaccinating a
large portion of the population, instead W becomes sparse by design
and not only the method we adopt but also the result is incorrect.
Formally, we can only see what is the e�ect of vaccination on the
spreading, assuming that a small fraction of the population has been
vaccinated and W is still dense. This heuristic result, however, gives
us some important intuition that we can verify numerically and that
can be rigorously proved with other more rigorous methods.

22 epidemics on networks

Let d̃i = disi. Then

(
Wd̃

)
i = ∑

j∈V
Aijsisjd̃j ≈= ∑

j∈V

d̃id2
j sj

2|E | = d̃i
sTd2

1T
n d

,

so sTd2

1T
n d is a close approximation of ρ(W). Now, if si is Bernoulli random

variable with probability p, we get

ρ(W) ≈ p
〈d2〉
〈d〉 .

So, the vaccination decreases the R0 and allows one to stay below the
epidemic threshold. From a simple observation, however, one sees that this
is not the optimal strategy. In fact, in we �x sT1n, i.e. the number of vaccines,
and attempt to minimize sTd2 one immediately sees that the solution lies
in vaccinating the nodes with the highest degree, i.e. the hubs. This target
immunization signi�cantly helps in improving the mitigation e�ectiveness.

2.3 extensions
In the previous sections we only considered the SIR to model an epidemic
spreading. While this is one the most relevant models in epidemiology, it
must be mentioned that several alternatives exist. The simplest one is the SI
in which individuals cannot recover and is equivalent to the SIR for µ = 0.
In this case one can see that no epidemic threshold exists and, for how lit-
tle is the transmission parameter, the epidemic will certainly involve all the
population sooner or later. Di�erent is the case of the SIS model in which
an infected individual recovers but is once again susceptible. This model
accounts for the fact that having experienced an infection does not imply
one is immune, in some cases. From a mathematical perspective this slightly
changes things: as we commented already, in the SIR, an infected individ-
ual cannot have been infected by a susceptible neighbor. On the opposite
in the SIS this can happen: a infected individual can have been infected by
someone who now is susceptible but that recovered. Actually, the di�erence
between these two regimes cannot be understood from the NMF approxima-
tion because it is indeed not able to capture this dynamic. If one adopts a
more re�ned approximation strategy, however, it is indeed possible to see
that in the two cases the epidemic threshold varies.

Other models realistically add more compartments to the equations. Some
of the most common are the exposed, vaccinated and dead compartments.
Exposed people are those who already contracted the virus but that are still
not contagious. After some time, they turn infected. The addition of these
or other compartments may take into account of more complex medical and
behavioral factors. On top of this, the model parameters may add further

2.4 references 23

depth. We assumed β, µ to be constant and equal for all individuals, while
one may assume that they depend, for instance, on age or mask-wearing.

It is worth mentioning that we only talked about simple contagion, i.e. the
process in which one infected individual passes the disease over to a suscep-
tible one. Thinking however of epidemiology in a broader sense, this is not
the only possible alternative. Contagion may occur, for instance, only if one
is exposed several times to an infected individual, each one passing a “piece”.
Only when all “pieces” are passed one becomes infected. Alternatively one
can imagine contagion as a process in which it is necessary to have several
infectious people interacting at once for the disease to be transmitted. We
talk in these cases of complex contagion.

2.4 references
• A.L. Barabasi,Network Science, Chapter 10, networksciencebook.com/chapter/10

This chapter gives a wide and detailed view of epidemics on networks
and can be used as a reading to get a bigger picture of the problem that
we only treated in a very schematic way. From the analytical view-
point, the book gives more results on the dynamics and considers also
other models but does not use the NMF as it was presented here, but
rather presents the degree-based mean �eld approach that is closely
related to NMF.

• Pastor-Satorras, Castellano, Van Mieghem, Vespignani, Epidemic pro-
cesses in complex networks, Reviews of modern physics 87.3 (2015): 925,
arxiv.org/pdf/1408.2701.pdf
This is a long but very important review. The intent of this review is
less pedagogical that the Barabasi’s book, but it takes a broader look
at the problem from a technical perspective and summarizes di�erent
results.

• P. Van Mieghem, Exact Markovian SIR and SIS epidemics on networks
and an upper bound for the epidemic threshold, arxiv.org/pdf/1402.1731.pdf
This article details some rigorous results based on the NMF approxima-
tion with a notation very similar to the one adopted in this chapter.

http://networksciencebook.com/chapter/10
https://arxiv.org/pdf/1408.2701.pdf
https://arxiv.org/pdf/1402.1731.pdf

3
CAVI T Y METHOD

3.1 Sparse and tree-like graphs 25
3.1.1 Locally tree-like graphs 25
3.1.2 Conditional independence 26

3.2 Factorizing probability distributions on trees 27
3.2.1 Cavity method on tree-like graphs 30

3.3 The non-backtracking matrix 31
3.4 An application to epidemics 32
3.5 E�ciently computing the spectral radius of B 34
3.6 Conclusion . 35
3.7 References . 35

3.1 sparse and tree-like graphs
In the previous lecture we introduced the naïve mean �eld (NMF) approxima-
tion to study the epidemic threshold on a graph. We saw, however, that this
approximation is appropriate only for dense graphs, while most of real world
graphs are (luckily) sparse. We here investigate an alternative approach that
is well suited for sparse random graphs and that builds an approximation
based on the locally tree-like1 structure of a sparse Erdős-Rényi (ER) graph.

3.1.1 locally tree-like graphs

Let us �rst introduce the concept of rooted graph Gi(V , E) that is a graph in
which a particular node i ∈ V (the root) is speci�ed. Denote with Bi(t) the
ball of radius t around the node i, i.e. the sub-graph made by the set of all
nodes that can be reached from i in at most t steps and the corresponding
edges. If the law of Bi(t) under uniformly random sampling of the root
admits a limitL, then we call it local weak limit. In words,L is the asymptotic
local distribution of G(V , E) as seen from a random vertex. A relevant result
concerning sparse ER graphs2 is that they locally converge to a tree, as more
formally stated in Property 3.1.

1 We recall that an undirected graph G(V , E)is said to be a tree if it is connected and it does
not contain any cycle.

2 But actually also other sparse random graphs.

25

26 cavity method

i

Figure 3.1: A toy example of a Poisson GW tree. In red the root i, in blue the �rst
generation of nodes, in green the second.

Property 3.1 (Convergence to Poisson Galton Watson tree (GW) tree of ER).
A sparse ER random graph with n → ∞ rooted at i with average degree d =

On(1) converges locally to a Poisson GW tree so obtained: consider the node i as
the root and generate di neighbours (called sons), where di is a Poisson random
variable with parameter d and iteratively repeat the operation for each son.

Local convergence to
a tree

As a consequence of this property, a sparse ER graph locally looks like
a tree and hence, with high probability, there are no cycles of �nite size.3
Figure 3.1 displays an example of a Poisson GW tree, rooted at i.

Let us now describe a fundamental property of probability distributions
de�ned over the nodes of a tree, namely, conditional independence.

3.1.2 conditional independence
Consider three random variables x, y, z. We say that x and y are condition-
ally independent given z if

Conditional
independence

P[x, y | z] = P[x | z]P[y | z]. (3.1)

Note that two random variables are independent if we can write P[xy] =
P[x]P[y], that is what we did in the NMF approximation. Conditional inde-
pendence holds only on the conditional probabilities and in general E[xy] 6=
E[x]E[y]. Now, the relation between conditional independence and trees is
that all variables associated to the neighbors of a same node are conditionally
independent given the value of their common neighbor, or, more formally

∀j 6= k ∈ ∂i, P[xj, xk | xi] = P[xj | xi]P[xk | xi].

Let us try to understand why. Suppose there is a piece of news that is propa-
gating on the network through contacts. If a node knows it, then with some

3 Recall the local convergence de�nition is given in the asymptotic limit of n → ∞. Finite
cycles will exist, but their size will depend on n (for instance they may grow as log(n)) and
thus diverge in the large n limit.

3.2 factorizing probability distributions on trees 27

probability it will talk about it to its neighbors that will also be aware of it
from that moment on. Now, let us consider a node i (as the red one in Fig-
ure 3.1) and two of its neighbors j, k (in blue, same �gure). If we let xi = 1
if i knows the piece of information and xi = 0 otherwise, then, clearly
P[xj, xk] 6= P[xj]P[xk]. If the variables were independent, the notion of
xj would not allow me to say anything about xk, but it turns out that if I
know xj I can tell something about xk. The two random variables bring in-
formation one of the other because there is a (short) path connecting them
and the piece of information may �ow from one node to the other. However,
since we are considering a tree, there is only one such path, that is the one
going through i. If we suppose to know xi, then knowing also xj does not
add any information when trying to predict xk, because the only in�uence j
has on k is through i. This is the e�ect of conditional independence.

Notably, conditional independence implies the following relation that we
will exploit later on.

P(xi, xj, xk) = P(xj, xk|xi)P(xi)

= P(xj|xi)P(xk|xi)P(xi)

=
P(xi, xj)P(xi, xk)

P(xi)
(3.2)

Knowing that a sparse ER random graph asymptotically “looks like” a tree,
we can now simplify our analysis exploiting conditional independence and
the graph structure to introduce the cavity method, or belief propagation.

3.2 factorizing probability dis-
tributions on trees

As we saw in Chapter 2, a di�culty of studying processes on a graph is
to compute the edge marginal probability distributions that cannot be sim-
ply assumed to factorize as the product of the node marginals. The cavity
method builds on the fact that the edge marginals can be exactly calculated
on tree with a recursive formula, as stated in Lemma 3.1.

Lemma 3.1. Let G(V , E)be a tree and let µ(x) be a probability distri-
bution de�ned on G(V , E)that can be written as

µ(x) = ∏
(ij)∈E

φij(xi, xj). (3.3)

Then the edge marginal µij(xi, xj) = ∑x\xi ,xj
µ(x) and the node

marginal µi(xi) = ∑x\xi
µ(x) can be written in the following form:

µi(xi) = ∏
k∈∂i

ηik(xi) (3.4)

28 cavity method

Figure 3.2: Sketch of a tree. The node i in red, while in green, blue and orange the
edges and nodes Eix,Vix with x = j, k, l, respectively. Note that i belongs
to Vik,Vij and Vi`.

µij(xixj) = φij(xi, xj) ∏
k∈∂i\j

ηik(xi) ∏
`∈∂j\i

ηjl(xj). (3.5)

The quantities ηij(xi) are de�ned on the set of directed edges.

From Equations (3.4, 3.5), exploiting µi(xi) = ∑xj
µij(xi, xj), it is obtained

that the messages have to satisfy the following �xed point equation

Message passing ηij(xi) = ∑
xj

φij(xi, xj) ∏
`∈∂j\i

ηjl(xj). (3.6)

Let us now sketch here the proof of Lemma 3.1 since it is very pedagogical
and helpful to understand the essence of cavity method.

Proof of Lemma 3.1. Denote with Ed the set of directed edges of
G(V , E)and consider (ij) ∈ Ed. We de�ne Eij as the set of all edges
that can be reached from i only passing through j. As a consequence
of the fact that on a tree there exists a unique path connecting any
two nodes – since there are no cycles –, the two following properties
are veri�ed:

∀ i ∈ V , E =
⋃

k∈∂i

Eik ; (3.7)

∀ (ij) ∈ E , E = {(ij)} ∪
⋃

k∈∂i\j

Eik︸ ︷︷ ︸
reached from (ji)

∪
⋃

`∈∂j\i
Ejl︸ ︷︷ ︸

reached from (ij)

. (3.8)

Furthermore, note that ∀ j 6= k, Eij ∩Eik = ∅. A pictorial representa-
tion of the de�nition of Eij is given in Figure 3.2. Exploiting Equation
(3.7), µ(x) can then be written as:

µ(x) = ∏
(ab)∈E

φab(xa, xb) = ∏
k∈∂i

∏
(ab)∈Eik

φab(xa, xb) := ∏
k∈∂i

ψik(xVik),

3.2 factorizing probability distributions on trees 29

where Vik is the set of nodes connected by edges in Eik (i included)
and xVik is the variable vector corresponding to those nodes. The node
marginal can then be written in the following form

µi(xi) = ∑
x\xi

µ(x) = ∑
x\xi

∏
k∈∂i

ψik(xVik) = ∏
k∈∂i

∑
xVik
\xi

ψik(xVik).

Denoting ηik(xi) := ∑xVik
\xi

ψik(xVik), we obtain the �rst equation of
Lemma 3.1. Note that ηki(xi) indeed only depends on xi since the sum
is run over all variables xVik , except xi. Proceeding in a similar way,
the expression of the edge marginal is obtained from Equation (3.8).

µij(xi, xj) = ∑
x\xixj

µ(x)

= ∑
x\xixj

φij(xi, xj) ∏
k∈∂i\j

∏
(ab)∈Eik

φab(xa, xb) ∏
`∈∂j\i

∏
(cd)∈Ek`

φcd(xc, xd)

= ∑
x\xixj

φij(xi, xj) ∏
k∈∂i\j

ψik(xVik) ∏
`∈∂j\i

ψj`(xVj`)

= φij(xi, xj)

 ∏
k∈∂i\j

∑
xVik
\i

ψik(xVik)

 ·
 ∏

`∈∂j\i
∑

xVj`\j

ψj`(xVj`)

= φij(xi, xj) ∏

k∈∂i\j
ηik(xi) · ∏

`∈∂j\i
ηj`(xj).

The essence of the proof of Lemma 3.1 relies on the conditional inde-
pendence of the node variables on trees. More speci�cally, to obtain Equa-
tion (3.7), one could imagine to remove the node i, obtaining di (the degree
of i) disconnected sub-graphs in which variables are independent and hence
factorize. Similarly Equation (3.8) is obtained removing the nodes i and j
from the graph. We now show that on a tree, Equation (3.2) is veri�ed.

Lemma 3.2. Let G(V , E)be a tree and let µ(x) be a probability dis-
tribution de�ned on G(V , E)that can be written as per Equation (3.3).
Then, taking j, k ∈ ∂i with j 6= k we can write

P(xi, xj, xk) =
P(xi, xj)P(xi, xk)

P(xi)

Proof. For simplicity, we will drop the dependence on the variables x.
Following the same procedure we used to prove Lemma 3.1, we can
easily show that

P(xi, xj, xk) = φijφik ∏
p∈∂j\i

ηjp ∏
q∈∂k\i

ηkq ∏
r∈∂i\{j,k}

ηir.

30 cavity method

This can be rewritten in the following form

P(xi, xj, xk) =

(
φij ∏

p∈∂j\i
ηjp ∏

r∈∂i\j
ηir

)(
φik ∏

q∈∂k\i
ηkq ∏

r∈∂i\k
ηir

)
ηik ∏

k∈∂i\k
ηir

=
Pij(xi, xj)Pik(xi, xk)

Pi(xi)
,

where in the last step we used the relations shown in Lemma 3.1.

Given these results on trees, let us now move to sparse graphs.

3.2.1 cavity method on tree-like graphs
When we consider a graph that is not a tree, the proof we gave above does
not generalize because Eij ∪ Eik 6= ∅, due to the presence of cycles. In a tree-
like graph, however, we know that cycles do not have a short length. When
considering two nodes j, k in the neighborhood of a same node, there will
be a short path of length 2 connecting them and other very long paths that
pass through other nodes. The main intuition we have is that all those long
paths are unimportant and the main channel of of relation is the short path
connecting them. For this reason, we simply use conditional independence
as an ansatz that is asymptotically veri�ed on sparse graphs. We can then
rewrite the cavity equations on a graph (with cycles) a follows.

The cavity �xed point equations

ηji(xi) =
Zi

Zji
∑
xj

φij(xi, xj) ∏
`∈∂j\i

ηj`(xj).

µi(xi) ≈
1
Zi

∏
k∈∂i

ηik(xi)

µij(xi, xj) ≈
1

Zij
φij(xi, xj) ∏

k∈∂i\j
ηik(xi) ∏

`∈∂j\i
ηj`(xj).

Factorizing
probabilities on
sparse graphs

Given these equations, we now introduce the non-backtracking matrix or
Hashimoto operator that naturally comes into play from the cavity method.

3.3 the non-backtracking matrix 31

3.3 the non-backtracking matrix
Let us consider the �xed point cavity equation, letting rij(xi) = log(ηij(xi))

and Cji = log(Zi)− log(Zji).

rji(xi) = Cji + log

∑
xj

exp

log φij(xi, xj) + ∑
`∈∂j\i

rj`(xj).

 .

Focusing on the sum ∑`∈∂j\i, we introduce the non-backtracking matrix.

The non-backtracking matrix

Let Ed be the set of directed edges of a graph G . We de�ne the non-
backtracking matrix B ∈ [0, 1]|Ed|×|Ed| as

B(ij),(k`) = δjk(1− δi`), (3.9)

for all (ij), (k`) ∈ Ed. Then, given a vector g ∈ R|Ed|, we have

(Bg)(ij) = ∑
`∈∂j\i

gj`.

The
non-backtracking
matrix is naturally
related to the cavity
method

In simple words, we can say that the non-backtracking matrix B is the
linear operator associated to the cavity approximation. To interpret its def-
inition, in essence we can see B as the adjacency matrix of graph in which
each node is a directed edge of G(V , E) and two nodes are neighboring if
they are successive and the second one is not the reversed of the �rst. Unlike
the adjacency matrix, the spectral radius of the non-backtracking matrix is
“well behaved” in the sparse regime, as stated by the following theorem.

Theorem 3.1. Consider a symmetric matrix A ∈ [0, 1]n×n in which
the entries are set to 1 independently (up to symmetry) with probability
P(Aij = 1) = Pij and Pij = On(n−1) for all i, j. Then, for all large n
with high probability, the spectral radius of the non-backtracking ma-
trix B associated with the adjacency matrix A is

ρ(B) = ρ(P) + on(1).

This theorem is very general and allows us to consider easily both the ER
and the con�guration model. For the ER, we have P = 〈d〉

n 1n1T
n and ρ(P) =

〈d〉, the expected average degree. For the con�guration model, instead, we
can write P = 1

2|E |ddT and thus ρ(B) = 〈d2〉
〈d〉 .

Let us now see how the matrix B enters into play when studying the epi-
demic threshold on a sparse graph with the cavity method.

32 cavity method

3.4 an application to epidemics
Let us now use the cavity method to �nd the epidemic threshold on a sparse
graph, in which the NMF is not appropriate. Let us consider Equation (2.2)
that describes the dynamics of the infected state in a Susceptible-Infected-
Recovered model (SIR) model. We can write

∂tP(xi(t) = I) = β ∑
j∈V

AijP
(
xi(t) = S, xj(t) = I

)
− µP(xi(t) = I).

The whole point of going beyond NMF is to realize that xi(t), xj(t) are not
independent if Aij = 1. To move forward, let us lighten a bit the notation.
We de�ne p ∈ Rn the vector with entries pi(t) = P(xi(t) = I) and with
χ(t) ∈ R2|E | the vector with entries χij(t) = P(xi(t) = S, xj(t) = I).
Note that the vector χ is de�ned over the set of directed edges of the graph
and that χij(t) 6= χji(t), in general. With this notation, we can rewrite the
state evolution as

∂t p(t) = βTχ(t)− µp(t), (3.10)

where we introduced the matrix T ∈ Rn×2|E |, de�ned as Ti,(ab) = δia Aab.
Now, to proceed, we need to write a state evolution equation for the vector
χ(t) as well. The probability that i and j are respectively susceptible and
infected at a given time step implies that they were both susceptible and j
got infected (but certainly not from i), while i did not or that j was already
infected, it did not recover and i did not get infected.

χij(t + dt) =

E

δ[xi(t) = S]δ[xj(t) = S]

1− βdt ∑
k∈∂i\j

δ[xk(t) = I]

︸ ︷︷ ︸

i does not get infected

βdt

 ∑
`∈∂j\i

δ[x`(t) = I]

︸ ︷︷ ︸

j gets infected

+ E

δ[xi(t) = S]δ[xj(t) = I]

1− βdt ∑
k∈∂i\j

δ[xk(t) = I]− βdt

︸ ︷︷ ︸

i does not get infected

(1− µdt)︸ ︷︷ ︸
j recovers

 .

Now, there are two approximations we can perform to simplify the analysis.
The �rst one is just to take the limit for dt→ 0 and remove the higher order
terms. The second one is done exploiting conditional independence. We �rst
remove the higher order terms in dt

χij(t + dt) dt→0
= βdt

 ∑
`∈∂j\i

E
[
δ[xi(t) = S]δ[xj(t) = S]δ[x`(t) = I]

]

3.4 an application to epidemics 33

+ χij(t)(1− βdt− µdt)− βdt ∑
k∈∂i\j

E
[
δ[xi(t) = S]δ[xj(t) = I]δ[xk(t) = I]

]
.

We now exploit conditional independence. We denote with Ωij = P(xi(t) =
S, xj(t) = S) and si = P(xi(t) = S) and write

E
[
δ[xi(t) = S]δ[xj(t) = S]δ[x`(t) = I]

]
=

Ωij(t) · χj`(t)
sj(t)

E
[
δ[xi(t) = S]δ[xj(t) = I]δ[xk(t) = I]

]
=

χik(t) · χij(t)
si(t)

,

thus turning the state evolution equation into

χij(t + dt) dt→0
= βdt

Ωij(t)
sj(t)

∑
`∈∂j\i

χj`(t) + χij(t)(1− βdt− µdt)− βdt
χij(t)
si(t)

∑
k∈∂i\j

χik(t).

To get the epidemic threshold we now want to linearize around the epidemic-
free �xed point that is Ωij, si, sj → 1 and χij → 0 and get

χij(t + dt) dt→0
= βdt ∑

`∈∂j\i
χj`(t) + χij(t)(1− βdt− µdt),

that can be written as

∂tχ(t) = (βB− (β + µ)I2|E |)χ(t).

Injecting this result in Equation (3.10)(
∂t p(t)

∂tχ(t)

)
=

(
−µIn βT

βB− (β + µ)I2|E | 0

)(
p(t)

χ(t)

)
.

From a simple calculation one sees that the stability condition is now ob-
tained on heterogeneous random graphs as

The reproductive number according to the cavity method

R0 =
β(ρ(B)− 1)

µ
=

β

µ

(
〈d2〉
〈d〉 − 1

)
.

If we compare this result with the one obtained from NMF, the main dif-
ference is the appearance of the term “−1” that accounts the fact that when
there is a susceptible-infected pair (ij), certainly i did not infect j. This comes
“for free”, in the sense that we did not have to add this correction manually
and it naturally came from the equations. Other than that the results seem
quite similar, but we must not forget that ρ(A) is very close to ρ(B) on
dense networks but not on sparse ones. In other words, 〈d

2〉
〈d〉 still is the good

quantity to look at, but it is actually not the spectral radius of A in the sparse
regime. Using the method explained in Chapter 2, we can derive the R0 of
the SIR model in the presences of vaccination. Note that, while with NMF this

34 cavity method

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
/

0.0

0.1

0.2

0.3

0.4

Bu
rd

en

No vaccines
Random vaccination
Targeted vaccination

Figure 3.3: Epidemic burden as a function of β/µ for di�erent vaccination

strategies. The yellow dots are the burden (fraction of non-susceptible
people at the end of the simulation) in absence of vaccination; the blue
diamonds correspond to the random vaccination; the purple squares are
the targeted vaccination in which each person is vaccinated with a prob-
ability proportional to the degree. The vertical lines (color coded) corre-
spond to the position of the transition as predicted by the cavity method
for the three di�erent scenarios.

result was not rigorous because the e�ect of vaccination is to sparsify the
network, with the cavity method we obtain e precise bound. The simulation
shows the goodness of the cavity method in this setting as well as the e�-
cacy of targeted vaccination strategies, as shown in Figure 3.3, we introduce
Qi,(ab) = δib Aab and M(ab),(cd) = Aab Acdδbcδad.

3.5 efficiently computing the spec-
tral radius of B

We have seen that the non-backtracking matrix naturally appears when
adopting the cavity approximation. The B matrix de�ned in Equation (3.9)
however is large (its size scales with the number of edges, not of nodes) and
it might not be so straightforward to build. However, we now show that
there is a matrix Bp of size 2n× 2n whose eigenvalues are also eigenvalues
of B and it is much more easily built. Similarly to the matrix T introduced
earlier Ti,(ab) = δia Aab, we introduce Q ∈ Rn×2|E | and M ∈ R2|E |×2|E |

Qi,(ab) = δib Aab

M(ab),(cd) = δbcδad Aab Acd.

Now, the following relations4 are satis�ed:

4 You may try to obtain these relations as an exercise.

3.6 conclusion 35

QTT −M = B

TQT = A

QQT = D

QM = T

TM = Q

With these relations at hand, suppose g is the leading eigenvector of B
with eigenvalue ρ, then

ρTg = TBg = T(QTT −M)g = ATg −Qg,

and

ρQg = QBg = Q(QTT −M)g = DTg − Tg.

Denoting Pg = x and Qg = y for simplicity, we obtain,(
A −In

D− In 0

)
︸ ︷︷ ︸

Bp

(
x

y

)
= ρ

(
x

y

)
, (3.11)

where we introduced the smaller matrix Bp ∈ R2n×2n. This matrix has the
same eigenvalues as B (except those equal to±1 that have a di�erent degen-
eracy). This matrix can thus be used to e�ciently compute ρ(B).

3.6 conclusion
In this section we introduced the cavity method and the closely related non-
backtracking matrix. Unlike the NMF approximation, this method is well
suited for sparse graphs, being asymptotically exact on sparse random graphs,
such as the ER. Consequently, this “second order” approximation (in which
we assume independence at the edge, rather than the node level) is more ac-
curate, but we must recall that real-world networks are often sparse but not
locally tree-like. Sparse random graphs, in fact, tend to have a much smaller
clustering coe�cient than a real network with the same average degree. The
low clustering coe�cient, however, implies the absence of short loops, mak-
ing the cavity method exact on random, but not on real world graphs, in
general. This approximation is a improvement over NMF approach that is
appropriate to deal with some of its limitations.

3.7 references
• Wainwright, Jordan: Graphical Models, Exponential Families, and Vari-
ational Inference

36 cavity method

This review is a milestone for physics methods on graphs and in Chap-
ter 4 it treats the cavity method.

• Mezard, Montanari: Information, Physics and Computation.
This is another relevant reference. The cavity method is discussed in
Chapter 14.

4
GRAPH FOURIER

TRANSFORM

4.1 The Fourier transform . 37
4.1.1 Deriving the Fourier transform 38

4.2 The graph Fourier transform 38
4.2.1 Heat di�usion on graphs 38
4.2.2 Decompose a signal on the graph Fourier modes . . 39
4.2.3 Frequencies on graphs 40
4.2.4 Some basic spectral properties of the graph Laplacian 42

4.3 Graph signal processing . 44
4.3.1 Tikhonov regularization 44
4.3.2 Filtering . 45

4.4 Conclusion . 48
4.5 References . 49

4.1 the fourier transform
The Fourier transform is a fundamental tool in mathematical analysis that
was introduced by Joseph Fourier in to solve the heat equation that in the
one dimensional case reads

The heat equation∂tu(x, t) = α ∂2
xu(x, t), (4.1)

where α is the thermal di�usivity. The Fourier transform was introduced
with the scope of solving this di�erential equation and it consists of moving
to the “space of frequencies” that, in some cases, like this one, can be very
convenient. This powerful tool of signal processing, in fact, allows one to
de�ne simple operations such as �ltering and convolutions in the frequency
domain that would otherwise be very hard to perform in the original one.
Given its power, we want to extend its de�nition to non-Euclidean domains
and in particular to functions that are de�ned on the vertices of a graph.

As a �rst step, we here re-derive the de�nition of Fourier transform, start-
ing from Equation 4.1 to then attempt to generalize it to the graph domain.

37

38 graph fourier transform

4.1.1 deriving the fourier transform
In Equation 4.1, the second derivative can be seen as an operator that acts
on the function u(x, t). The simplest way to derive the Fourier transform is
to see it as a decomposition of u(x, t) on the eigenfunctions of that operator.
We start from these two basic properties

The eigenfunctions of
the second derivative

∂2
x eikx = −k2eikx, (4.2)

1
2π

∫
R

dk eikx = δ(x). (4.3)

These two equations imply that eikx are the eigenfunctions of the second
derivative and they form an orthogonal basis. For a given function f (x) we
can thus write

The Fourier
transform

f (x) =
∫

R
dy f (y)δ(x− y)

(a)
=

1
2π

∫
R

dy f (y)
∫

R
dk eik(x−y)

(b)
=

1
2π

∫
R

dk eikx
∫

R
dy f (y)e−iky︸ ︷︷ ︸

f̂ (k)

(c)
=

1
2π

∫
R

dk f̂ (k)eikx,

where in (a) we used the de�nition of the δ function given in Equation (4.3),
in (b) we inverted the order of the two integrals and in (c) we introduced
the Fourier transform de�nition as f̂k. The function f (x) is then expressed
as combination of the eigenfunctions of the second derivative – Laplacian,
in higher dimensions – operator. Here, the f̂ (k) plays the role of the “weight
coe�cient” of each eigenfunction.

Repeating these steps, we now derive a the graph Fourier transform .

4.2 the graph fourier transform
We here derive the Graph Fourier transform (GFT) de�nition, �rst writing the
heat equation on a graph, then decomposing a signal on the basis of the new
Laplacian operator as done before.

4.2.1 heat diffusion on graphs

Consider a graph G(V , E) and let ui(t) be a signal de�ned on node i ∈ V
at time t. We suppose that this signal evolves with a di�usive process on the

4.2 the graph fourier transform 39

Figure 4.1: Di�usion on a graph with communities. In color code we have the
value ui(t) and the title indicates the four di�erent time-steps.

graph and that, at each time-step, a i exchanges a fraction α of information
ui(t) with each of its neighbors. In equations, this becomes

ui(t + dt) = ui(t) + α ∑
j∈V

Aij(uj(t)︸︷︷︸
j→i

− ui(t)︸︷︷︸
i→j

).

This allows us to rewrite the di�usion equation in vector form as
Heat di�usion
on a graph

∂tu(t) = −α(D− A)u(t) := −αLu(t),

where we introduced the graph Laplacian matrix L. In Figure 4.1we show a
simple example of di�usion on a graph with three groups of nodes – called
communities – that are more densely connected among themselves than
with other. We initialize ui(t) = 0 for all nodes except and perform the
simulation. The result reported at three successive time-steps evidences a
di�usion process that follows a concept of proximity on the graph: �rst the
signal is propagated in the node in the same community and to few of the
other communities (t = 50), then it progressively tends to a homogeneous
distribution. Let us now formally de�ne the graph Laplacian matrix

The graph
Laplacian matrix

The graph Laplacian matrix

Given an undirected graph G(V , E) with A ∈ [0, 1]n×n as adjacency
matrix and D = diag(A1n) the diagonal degree matrix, the graph
Laplacian associated to G(V , E) is

L = D− A (4.4)

Given this matrix, we now use it to decompose the signal u on its basis and
show that it how we can relate this decomposition to a “frequency domain”.

4.2.2 decompose a signal on the graph
fourier modes

Following the same procedure as above, to de�ne the graph Fourier trans-
form we decompose the signal on the orthonormal basis de�ned by the eigen-
vectors of L. Since L is a Hermitian matrix, these eigenvectors form and or-
thonormal basis and they play the same role as eikx in the classical Fourier

40 graph fourier transform

transform. We denote with xk the eigenvector k associated with λk, the k
smallest eigenvalue of L i.e. Lxk = λkxk, then

The eigenvectors of L
form an

orthonormal basis

In =
n

∑
k=1

xkxT
k .

For any vector u ∈ Rn de�ned on the vertices of G(V , E), we can write

Projecting u on the
basis of L

u = Inu =
n

∑
k=1

xk xT
k u︸︷︷︸
ûk

=
n

∑
k=1

xkûk.

By analogy with the classical Fourier transform, we de�ne û = XTu is the
GFT, having denoted with X ∈ Rn×n the matrix with the eigenvectors of L
in its columns.

The graph Fourier
transform

The graph Fourier transform

Consider an undirected graph G(V , E) with L the graph Laplacian
matrix of Equation (4.4), and a signal u ∈ Rn de�ned on the set V . Let
L = XΛXT be the eigenvector decomposition of L, with X ∈ Rn×n

the matrix with the eigenvectors of L in its columns. We de�ne the
GFT û and its inverse as

û = XTu (4.5)
u = Xû. (4.6)

The expression of the inverse GFT easily comes from the property XXT =

In. Now that we introduced a de�nition for the GFT we want to see how it
actually relates to some concept of frequency of the signal on the graph.

4.2.3 freqencies on graphs
The best way to understand the relation between the graph Laplacian and
the concept of frequency is through this lemma that we will then prove.

Lemma 4.1. Let u ∈ Rn be a vector de�ned on the vertices of a graph
G(V , E) with graph Laplacian matrix L. then

uT Lu =
1
2 ∑

i,j∈V
Aij(ui − uj)

2. (4.7)

Proof.

uT Lu = ∑
i,j∈V

uiLijuj

(a)
= ∑

i,j∈V
uiDijuj − ∑

i,j∈V
ui Aijuj

4.2 the graph fourier transform 41

Figure 4.2: Some graph Fourier modes on a graph. From left to right: the eigen-
vector associated to the second, third and fourth smallest eigenvalue of
L. Color-map: positive values in yellow, negative ones in blue. Picture
taken from 10.1016/j.crhy.2019.08.003.

= ∑
i,j∈V

uidiδijuj − ∑
i,j∈V

ui Aijuj

= ∑
i∈V

u2
i di − ∑

i,j∈V
ui Aijuj

(b)
= ∑

i,j∈V
u2

i Aij − ∑
i,j∈V

ui Aijuj

(c)
=

1
2

(
∑

i,j∈V
u2

i Aij + ∑
i,j∈V

u2
j Aji

)
− ∑

i,j∈V
ui Aijuj

(d)
=

1
2

(
∑

i,j∈V
u2

i Aij + ∑
i,j∈V

u2
j Aij

)
− ∑

i,j∈V
ui Aijuj

=
1
2 ∑

i,j∈V
Aij(u2

i + u2
j − 2uiuj)

=
1
2 ∑

i,j∈V
Aij(ui − uj)

2,

where in (a) we used the de�nition of graph Laplacian L = D− A,
in (b) we rewrote the degree di = ∑j∈V Aij, in (c) we exploited the
fact that i, j are dummy variables that can be inverted and in (d) we
used Aij = Aji.

The consequence of Lemma 4.1 is that the eigenvalues of L can be inter-
preted as a “frequency” of the corresponding eigenvector, in the sense that
they quantify how fast xk changes on the graph.

λk = xT
k Lxk =

1
2 ∑

i,j∈V
(xk,i − xk,j)

2,

so if the eigenvector xk changes smoothly on the graph, i.e. is has similar
value for neighboring nodes, the corresponding eigenvalue will be small.
Figure 4.2 shows in color code the frequency of the second, third and fourth
eigenvectors of L on a graph.

https://doi.org/10.1016/j.crhy.2019.08.003.

42 graph fourier transform

Using the GFT notation we can write, for a generic vector u

uT Lu = u

(
n

∑
k=1

λkxkxT
k

)
u =

n

∑
k=1

λkû2
k .

The term ûk is a weight that accounts for how much u is aligned with xk
and λk is the corresponding frequency. The scalar uT Lu can hence be used
to quantify how fast the signal u changes on the graph.

To summarize, the eigenvectors of the graph Laplacian matrix are the
Fourier eigenmodes and by projecting a signal over them we are in the
Fourier space of frequencies that are the eigenvalues of the same matrix.
We now detail some basic but relevant property of the eigenvalues of the
graph Laplacian matrix that is fundamental to understand the GFT.

4.2.4 some basic spectral properties of
the graph laplacian

We here list and prove three basic facts about the graph Laplacian eigenval-
ues. We �rst formally state that L does not have any negative eigenvalues.

Corollary 4.1. The graph Laplacian matrix L is positive semi-de�nite,
i.e. it does not have negative eigenvalues. The all one vector 1n is an
eigenvector of L with eigenvalue 0.

Proof. This is a corollary to Lemma 4.1. Let xk be an eigenvector of
L with eigenvalue λk, then

λk = xT
k Lxk =

1
2 ∑

i,j∈V
(xk,i − xk,j)

2 ≥ 0.

The equality is reached for x1 = 1n that is an eigenvector because
D1n = d and A1n = d, where d denotes the degree vector.

The second property concerns the multiplicity of the 0 eigenvalue and its
relation to the connectedness of the graph.

Corollary 4.2. The multiplicity of the 0 eigenvalue of graph Laplacian
matrix L equals the number of connected components of the graph.

Proof. Also in this case the proof is a straightforward consequence of
Lemma 4.1. Consider a graph G(V , E) with c connected components
{Va}a=1,...,c so that

∪a=1,...,cVa = V
∀ a 6= b Va ∩ Vb = ∅.

4.2 the graph fourier transform 43

Denote with y(a) the vector with entries y(a)
i = 1 if i ∈ Va and 0

otherwise. Then

(Ly(a))i = ∑
j∈V

(D− A)ijy
(a)
j

=
c

∑
b=1

∑
j∈Vb

(D− A)ijy
(a)
j

(a)
= ∑

j∈Va

(D− A)ij

(b)
= y(a)

i · (di − di) = 0,

where in (a) we used the fact that y(a)
j = 0 for all j /∈ Va, while in

(b) that all the connections each node has are within the same con-
nected component. Given their de�nition, the indicator vectors are
orthogonal, i.e. (y(a))Ty(b) = δab and thus are di�erent eigenvectors
of L, concluding the proof.

Finally, we provide a result on the largest eigenvalue of L that will be
useful for the next sections.

Lemma 4.2. Letting dmax be the largest degree of a graph, The spectral
radius of L satis�es the following inequality.

ρ(L) ≤ 2dmax.

Proof. Let x be the eigenvector associated with the largest eigenvalue
of L, so that Lx = ρ(L)x. Consider the index i satisfying |xi| ≥ |xj|
for all j. Then we can write

|ρ(L)xi| = |(Lx)i|

=

∣∣∣∣∣∑j∈V Lijxj

∣∣∣∣∣
(a)
≤ ∑

j∈V
|Lij||xj|

(b)
≤ |xi|∑

j∈V
|Lij|

= |xi|2di

≤ |xi|2dmax,

where in (a) we used the triangle inequality and in (b) we exploited
the property of the index i.

44 graph fourier transform

As one can see from the proof, this is not a very tight bound and better
results exist. Yet, this is a simple bound we can �nd without the need to
explicitly compute the largest eigenvalue. We now proceed in our discussion
with some more practical applications of the GFT to graph signal processing.

4.3 graph signal processing

4.3.1 tikhonov regularization
We formulate here a semi-supervised learning problem of on a graph that
we solve exploiting the concept of GFT. We suppose that there is a signal
u ∈ Rn de�ned on the nodes of a graph but only some entries of this signal
are known. In particular Q is the set of measured nodes meaning that we
know ui for all i ∈ Q and our problem is to guess ui for all i ∈ V \ Q. We
attempt to reconstruct the signal on the whole graph by identifying a vector
v ∈ Rn that is at the same time close to u for all i ∈ Q and that is smooth
on the graph.1 For all i /∈ Q we hence make a sort of interpolation with the
known signal values. We let ṽ, ũ ∈ R|Q| be two vectors de�ned only on the
set of labeled vertices of G(V , E)and we de�ne the following loss function

L(v, u) = ‖ũ− ṽ‖2 + γvT Lv.

The �rst term simply imposes that the loss is minimized when v is equal to
u for all i ∈ V . The second term instead represents instead the “frequency”
of v that we want to minimize to ensure the signal changes smoothly over
the graph. The factor γ is a weight that balances these two terms: large γ

will enforce high regularization, while small γ will tend to force a matching
result on the labeled nodes. To explicitly formulate the optimization problem,
we let Q ∈ Rn×n be a matrix de�ned as follows

Qij = δij1i∈Q. (4.8)

The reconstructed signal is then u∗, the solution to Tikhonov regularization.

Tikhonov
regularization

Tikhonov regularization

Consider a graph G(V , E) with Laplacian matrix L; a matrix Q as
per Equation 4.8; a signal u ∈ Rn de�ned on V ; and a positive scalar
γ. We de�ne u∗ the solution of Tikhonov regularization as

u∗ = arg min
v∈Rn

(u− v)TQ(u− v) + γvT Lv. (4.9)

1 For instance, the values ui can be the temperatures measured by weather stations at di�erent
locations. If we want to have a guess of the temperature in places where no station is available,
we may solve this problem on a spatial graph in which each node corresponds to a point on
the Earth and edges connect nodes with a distance below a given threshold.

4.3 graph signal processing 45

Figure 4.3: Tikhonov regularization for image reconstruction. Left: the origi-
nal black and white image. Center: the measured image in which only
10% of the pixels are known. Right: The reconstructed image using
Tikhonov regularization for γ = 0.1.

The optimization of Equation (4.9) can be solved analytically, in fact,

∇vL(u, v) = −2Q(u− v) + 2γLv.

Setting ∇v = 0, we get2

u∗ = (Q + γL)−1Qu.

In Figure 4.3 we show an example of application of this algorithm to recon-
struct an image given that only some pixels are known. We naturally de�ne
a grid graph that connects each pixel to its neighbors and show the input
image against the reconstructed one. This example clearly shows the power
of Tikhonov regularization.

4.3.2 filtering
We now address a closely related problem to the one above, that is �lter-
ing. Suppose that the signal u ∈ Rn is observed on all the graph vertices
but that there is some noise. Our goal is to obtain a cleaner version of the
signal, removing the noise by exploiting the fact that the signal changes
smoothly over the graph, while noise does not. Equation (4.9) can still be
used to achieve this task letting Q = In. Let us look more closely at the
solution of the smoothed vector u∗

u∗ = (I + γL)−1u

=
n

∑
k=1

1
1 + γλk

xkxT
k u

2 Note that inverting the matrix Q + γL is not computationally e�cient nor necessary and
the problem can be solved in a faster way �nding the solution to (Q + γL)u∗ = Qu with
an appropriate solver.

46 graph fourier transform

=
n

∑
k=1

xk︸︷︷︸
anti−transform

1
1 + γλk︸ ︷︷ ︸

filter in frequency demain

ûk︸︷︷︸
Fourier transform

.

The order in which we should see the operations is from right to left. First
we project the signal u on the Laplacian eigenvectors, thus moving to the
Fourier space. Here we re-weight every mode with the function f (x) =

(1+ γx)−1. This is a low-pass �lter because the smallest eigenvalue λ1 = 0
gets a weight equal to one and it corresponds to the eigen-mode with small-
est frequency. As we consider larger values of k (hence larger frequencies),
f (λk) decreases, thus �ltering out the contribution of high frequency states.
Finally, we make the anti-transform and get back to the original space.

Now that we have introduced the concept of �ltering, we can design any
�lter that acts in the frequency domain so to get a good result. Considering
a general �ltering function f , we can write

Filtering in the
Fourier space

u∗ =
n

∑
k=1

xk f (λk)ûk. (4.10)

A relevant problem is that to solve exactly this problem, we must compute
all the eigenvalues of L which requires O(n3) operations and is unfeasible
for large networks. If we use a polynomial �lter (or the polynomial approx-
imation of the �ltering function), however, we can greatly simplify things.
Suppose that

Polynomial �lter f (x) =
p

∑
a=0

αaxa,

then we can rewrite Equation (4.10) as

u∗ =
n

∑
k=1

p

∑
a=1

xkapλ
p
k ûk

(a)
=

n

∑
k=1

p

∑
a=1

apLpxkûk

(b)
=

n

∑
k=1

p

∑
a=1

apLpxkxT
k u

(c)
=

p

∑
a=1

apLpu,

where in (a) we exploited the fact that xk is an eigenvector of Lp with
eigenvalue λ

p
k and in (b) we explicitly rewrote ûk = xT

k u and in (c) we
used In = ∑n

k=1 xkxT
k . From the last equation we can see that the smoothed

function can be computed using a polynomial of L, without the need of di-
agonalizing the matrix. One can still argue, however, that for large p, the
matrix Lp is quite dense and thus the computational complexity to perform
this operation is still very high. What has to be noticed is that we do not
need to compute Lp but actually only Lpx and this can be done e�ciently.

4.3 graph signal processing 47

0 2 4 6 8 10 12 14 16
t

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

p = 10 p = 20 p = 30 p = 40

e t

Figure 4.4: Polinomial approximation of the exponential decay. The exponen-
tial decay function is shown in black for γ = 1, while in color we have
the p order polynomial approximation for di�erent values of p. The or-
ange background indicates the values of t for which the approximation
must not diverge and it spans from 0 to γρ(L).

In fact, let yp = Lpx, then Lp+1x = Lyp. This is the product between a
(presumably sparse) matrix and e vector. Iterating this for all p, we see that
the calculation can be performed very e�ciently.

We now conclude with an example. We consider the NYC taxi dataset con-
taining several information about taxi drives, including the region (of NYC)
of origin and destination and fare of the ride. These data can be found here.
The city is divided in approximately 300 regions and we compute the av-
erage fare of the destination for each origin. This signal signal is strongly
auto-correlated, meaning that nearby regions have similar average fares to
be paid. We now introduce some noise in this dataset, taking a random sam-
ple including 25% of the total number of regions and randomly reassigning
them the average fare amount. Our goal is to reconstruct the original sig-
nal by �ltering out the high frequency components introduced by noise and
exploiting geometrical proximity to smooth the signal.

From the dataset we can extract the coordinates of the centroid of each
region and use that to build a graph. We generate it using a fast k nearest
neighbors algorithm that connects each node i to its k closest nodes. Note
that the matrix we get in this way is not symmetric: Palermo and Roma are
(probably) the closest provinces to Sassari, but the opposite is not true. We
then must �rst symmetrize the adjacency matrix to get the correct represen-
tation of our graph. We then design an exponential �lter e−γx, exploiting its
polynomial approximation, i.e.

f (x) =
p

∑
a=1

(−γx)a

a!
,

for some p. As we know, the modulus of a polynomial function tends to
in�nity for x → ∞ and is thus not a good approximation of the exponen-
tial function. Yet, the argument of the function is bounded by γρ(L) and

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

48 graph fourier transform

Original Noisy Reconstructed

Figure 4.5: Signal �ltering of taxi fares in New York. Left panel: original signal
of the average fare of the region of destination. Center panel: noisy ver-
sion of the signal. Right panel: smoothed signal using the exponential
�lter and p = 30.

we must choose the order of the polynomial p so that is well approximates
the exponential function for all x ∈ [0, γρ(L)]. Note that, from 4.2 we do
not need to explicitly compute ρ(L) as we have a bound as per Lemma 4.2.
Figure 4.4 shows the function f (x) for di�erent values of p: the colored
background denotes the region in which the �lter must well approximate
the exponential, hence p = 30 is a reasonable choice to proceed. Figure 4.5
shows in color code the result of this experiment.

4.4 conclusion
In this chapter we introduced the concept of Fourier transform on graphs
and showcased to example os application to signal reconstruction and de-
noising. The GFT is an important tool because it allows one to introduce the
concept of “frequency” of a signal on a graph i.e. , of how fast it changes of the
neighbors. Even if we did not discuss it, the relevance of the GFT goes well
beyond these two examples and is at the basis of the convolutional graph
neural networks. Note that the convolution of two function f , g can be writ-
ten exploiting their Fourier transforms f̂ , ĝ as

(f ∗ g)(x) =
1

2π

∫
R

dk f̂ (k)ĝ(k)eikx,

i.e. the Fourier transform of the convolution of two functions if the product
of their Fourier transforms. Consequently, this allows one to de�ne the con-
volution on a graph exploiting the de�nition of GFT and, in fact, the graph
Laplacian matrix is a fundamental building block of convolutional neural net-
works. As a �nal remark, we would like to stress that, even though we only
mentioned the relation between the matrix L and the GFT, other matrices
can similarly be used to de�ne the concept of Fourier transform on graphs.
One of the most commonly adopted ones is the normalized Laplacian

Ln = In − D−1/2AD−1/2. (4.11)

4.5 references 49

4.5 references
• Ricaud, Borgnat, Tremblay, Gonçalves, Vandergheynst: Fourier could
be a data scientist: From graph Fourier transform to signal processing on
graphs
This is a quite pedagogical review on GFT.

• Tremblay, Gonçalves, Borgnat: Design of graph �lters and �lterbanks.
This is a more advanced reference with the focus on graph �lters.

5
COMMUNI TY DETECT ION

5.1 Community detection . 51
5.1.1 De�ning communities 52
5.1.2 The number of communities 53
5.1.3 Comparing partitions 53
5.1.4 Computational complexity 54

5.2 Optimization approaches . 55
5.2.1 Some de�nitions . 55
5.2.2 Louvain algorithm 56
5.2.3 Pitfalls of optimization approaches 58

5.3 Inference in the DCSBM . 59
5.3.1 The degree corrected stochastic block model 60
5.3.2 Information theoretic limits in the DCSBM 60
5.3.3 DCSBM Bayesian inference 61
5.3.4 Optimization vs model based: a statistical physics per-

spective . 62
5.4 Spectral clustering . 64

5.4.1 Vanilla spectral clustering 65
5.4.2 The relation with optimization approaches 66
5.4.3 A random matrix perspective 67
5.4.4 Spectral clustering in sparse graphs 69
5.4.5 Final remarks on spectral clustering 75

5.5 Conclusion . 75
5.6 References . 76

5.1 community detection
Real-world networks often have groups of nodes that are more densely con-
nected among themselves than with others: we refer to this recurrent topo-
logical property as presence of a community structure. Let us list some exam-
ples of communities in real-world networks:

• In human social networks edges indicate an interaction between indi-
viduals. Depending on the system under consideration, one can �nd
communities that represent groups of friends, people that speak a com-
mon language, colleagues of people from a same party. A practical ex-
ample is a co-authorship network of researchers, in which an edge

51

52 community detection

Figure 5.1: Agraphwith communities. Each community is marker coded. Picture
taken from Newman, Netwoks.

between two nodes (researchers) is drawn if they co-authored a paper
and communities correspond naturally to research �elds.

• Social networks such as Facebook or, more generally the Web have a
community structure made of groups of related pages or accounts.

• In biology, groups of molecules form functional modules that can be
represented as communities of a network.

• If one identi�es the nodes with the words of a dictionary and edges
represent co-occurrence in a text, then communities indicate words
that are related, such as milk and cow.

Some examples of
graph with

communities

More generally, given a set of objects (say images) that can be related, one
can design a graph in which each node corresponds to an element and an
edge represents the relation between pairs of objects. Communities then cor-
respond to categories of objects (such as images of dogs vs images of cats).
Community detection (CD) is the task of identifying these communities on
a given graph. Given the broad range of systems that can be modeled with
networks, CD has important applications in categorization. We now give a
broad overview of some building blocks of CD that need to be considered to
have a full picture of the problem at hand.

5.1.1 defining communities
A relevant problem of CD is that, although it appears as an intuitive task,
strictly speaking it is ill-de�ned. In fact there exist no shared consensus in
the scienti�c literature on what a community really is. Every CD algorithm is

5.1 community detection 53

based on a particular de�nition – that can be more or less explicit – of com-
munities and, from an operational viewpoint, one can de�ne communities as
the output of a particular CD algorithm.

Communities are
ill-de�nedIn the remainder we will consider CD only for undirected and unweighted

graphs, with the additional requirement that communities are not overlap-
ping. This means that the output of a CD algorithm can be represented in
the form of a vector ` ∈ [k]n, where k is the number of communities and n
the number of nodes. This labeling vector associates each node to a unique
class. Denoting with Va = {i ∈ V : `i = a} the set of all nodes with label
a, we have that

V =
k⋃

a=1

Va ;

Va ∩ Vb = ∅ for a 6= b.

It has to be noted, however, that also this requirement can be questioned and
there are many algorithms that instead consider a more general concept of
overlapping communities. An example of a non-overlapping node partition
on a graph is shown in Figure 5.1.

5.1.2 the number of communities
Community detection is an inherently unsupervised task, meaning that the
input of CD is a graph G(V , E) without any additional information. Con-
sequently, a problem is related to the fact that the number of communities
itself needs to be determined. This is a signi�cant challenge, as we will see in
the remainder. Intuitively, the problem is related to the fact that comparing
partitions with the same number of communities may be a rather straight-
forward task, but not the same can be said for partitions into a di�erent
number of groups. As a consequence, some algorithms require the number Determining the

number of
communities is a
di�cult task

of communities k is required as an algorithm input and leave the problem of
�nding a reasonable k to the user. Other algorithms adopt greedy strategies
to compare partitions with di�erent numbers of communities and su�er for
several limitations for this very reason, as we will see in the remainder. Gen-
erally speaking, very few methods are known to reliable estimate k and they
leverage speci�c de�nitions of communities. For this reason, when one is
performing CD, it should be well aware of the fact that di�erent algorithms
may yield very di�erent responses and a holistic vision may help one have a
clearer picture. But how do we compare the outputs of di�erent algorithms?

5.1.3 comparing partitions
The output of a CD algorithm is a node partition, i.e. a subdivision of the
graph nodes into sets. Importantly, the naming of the subsets that we pro-
vide (say a and b, 0 and 1, red and blue) are only meaningful when consider-

54 community detection

ing di�erent nodes in the same partition. If instead we consider two di�erent
partitions, the naming we use can be interchanged (what we used to call b
is now a) or even be completely di�erent (we call them c and d). As a conse-
quence, partitions cannot be directly compared and more re�ned strategies
need to be adopted.

Two di�erent naming
strategies of the same

partition

A powerful metric to compare di�erent partitions is based on the mutual
information. The mutual information between two random variables X and
Y quanti�es how much is known of X if Y is given. In the example on the side
bar, knowing that a point is red in the �rst partition implies that it is green in
the second. The metric we will adopt in the following is the Adjusted mutual
information (AMI) that is a rescaled version of the mutual information so that:
AMI = 1 if the partitions are equivalent; AMI = 0 if the partitions contain
as much information of one another as a random guesser. Notably, the AMI
also allows us to compare partitions with a di�erent number of communities.

5.1.4 computational complexity

Large graphs require
algorithms with a

computational
complexity scaling

linearly with m

As a �nal remark, we should be aware that CD is a practical task that is
executed by algorithms that should be fast, in order to be deployable. The
measure of speed of an algorithm is its computational complexity, i.e. how
many operations the algorithm performs with respect to the number of in-
put variables. For CD there are two main quantities of interest that determine
the computational complexity: the number of edges m of G(V , E) and the
number of communities k. A �rst remarkable distinctions should be made
between polynomial algorithms and NP-hard ones. Polynomial algorithms
require a number of operations scaling asO(mαkβ) for some α, β ≥ 0, while
NP-hard problems likely1 require an number of operations that goes to in�n-
ity faster than any polynomial. In practical terms, NP-hard problems cannot
be solved unless for very small input graphs, since the number of opera-
tions required may even scale exponentially with the number of nodes. In
practice “NP complete” should sound to your ears as “impossible to solve”.
Polynomial-time algorithms are the only ones that can used, but polynomial
does not mean fast. In fact, on an ordinary personal computer, running an
algorithm with complexity O(n3) may become prohibitive in terms of time
and memory for n > 104. In practice, fast algorithms that can be applied to
large graphs should scale linearly with the number of edges m.

We now proceed providing an overview of some popular approaches to
CD, alongside with their strengths and limitations.

1 Even if it is not proved, it has be conjectured that NP-hard problems do not admit a polyno-
mial time solution.

5.2 optimization approaches 55

Figure 5.2: Graph cut evaluation. Two partitions of the same graph: the one on
the left has a graph cut equal to 2, while the one on th right has a graph
cut equal to 1.

5.2 optimization approaches
De�ning communities as the solution of an optimization problem consists
in identifying a quality function assessing how satisfactory a given class
partition is on a graph. Such function should depend on the partition ` and
the graph G(V , E), in the form of its adjacency matrix A.

5.2.1 some definitions
The simplest method to de�ne such a cost function consists in literally count-
ing how many edges fall among nodes in the same di�erent communities and
minimize it.2 We then introduce the graph cut

The graph cut
QCut

A (`) =
1
2

k

∑
a=1

∑
i∈Va

∑
j/∈Va

Aij, (5.1)

where we recall that Va = {i ∈ V : `i = a} is the set of all nodes
with label p. The goal is to �nd ` that minimizes QCut

A , under the constraint
` 6= 1n, which prevents all nodes from being assigned to the same cluster.
Yet, for how reasonable this function may seem, it is too simple and it tends
to create partitions in which a single node is isolated from all others, as
shown in Figure 5.2. Even if these partitions are so that nodes in the same
community are more connected with one another than with other nodes,
they do not encode a common sense meaning of community.

To cope with this problem, we must introduce the requirement that the
community is su�ciently large. We do so introducing the ratio cut (RCut), in
Equation (5.2) and the normalized cut (NCut) in Equation (5.3).

QRCut
A (`) =

1
2

k

∑
a=1

1
|Va| ∑

i∈Va

∑
j/∈Va

Aij (5.2)

2 Note that, since the number of edges of a given graph its �xed, we are also maximizing the
number of edges between nodes in the same community.

56 community detection

QNCut
A (`) =

1
2

k

∑
a=1

∑i∈Va ∑j/∈Va
Aij

∑i∈Va ∑j∈V Aij
, (5.3)

Another quality function that is very popular is the modularity:

Normalized cut

Modularity QMod
A (`) =

1
4|E | ∑

i,j∈V

(
Aij −

didj

2|E |

)
δ(`i, `j), (5.4)

The modularity attributes a large score to con�gurations in which nodes in
the same community are connected by a greater than expected3 number of
edges. In fact, for a �xed degree sequence, didj/2|E | is the probability that
nodes i and j are connected if edges were placed at random. The modularity
has subsequently been exploited to de�ne CD algorithms in which the label
assignment is obtained maximizing the QMod

A (`). In practice, a modularity
equal to 0.4 is considered to be a good partition, even if we will discuss how
this metric should be taken with caution. Since modularity maximization is
one of the most popular methods for CD, we will look at it in more detail,
describing a modularity maximization algorithm.

5.2.2 louvain algorithm
Given its popularity, we here will discuss one algorithm to optimize the mod-
ularity cost function, that is called Louvain algorithm, named after the uni-
versity of origin of the researchers that introduced it. The �rst, fundamental
observation is that Modularity (but also RCut, NCut) optimization is an NP
hard problem. We thus need to �nd some greedy algorithm to �nd a reason-
able approximation of this maximum.

The Louvain algorithm indeed de�nes an approximate strategy to maxi-
mize the modularity and it is composed of two steps. The �rst starts from a
con�guration in which each node is set in a di�erent community and then
each single nodes is moved to the community of one of its neighbors if there
is a gain in modularity in doing so. When no gains in the modularity can be
obtained, step 1 is concluded. Communities are then represented as nodes
and the edges are given a weight according to how many links run between
one community and the other. The process is iterated until there is no gain
in merging nodes. Figure 5.3 summarizes the steps of Louvain algorithm.

The main advantage of Louvain algorithm is related to its speed. since the
computation of the modularity variation can be performed very e�ciently.
Letting m = 2|E | for simplicity, we can rewrite the modularity as follows:

QMod
A (`) =

1
m ∑

i,j∈V

(
Aij −

didj

m

)
δ(`i, `j)

3 In other words, the modularity compares the realization of the matrix A with a typical real-
ization of a null model, called con�guration model.

5.2 optimization approaches 57

Figure 5.3: Schematic representation of Louvain algorithm. Each pass is made
of two phases: one where modularity is optimized by allowing only local
changes of communities; one where the found communities are aggre-
gated in order to build a new network of communities. The passes are
repeated iteratively until no increase of modularity is possible. Picture
taken from Blondel et al, Fast unfolding of communities in large networks.

(a)
=

1
m

k

∑
a=1

k

∑
b=1

∑
i∈Va

∑
b∈Vb

(
Aij −

didj

m

)
δ(a, b)

=
1
m

k

∑
a=1

∑
i,j∈Va

(
Aij −

didj

m

)
(b)
=

1
m

k

∑
a=1

∑
i∈Va

(
d(a)

i −
diΣ

(a)
tot

m

)

(c)
=

k

∑
a=1

Σ(a)
in
m
−
(

Σ(a)
tot
m

)2

, (5.5)

Rewriting the
modularity in a
simpler form

where in (a) we denoted with Va = {i : `i = a}, in (b) we denoted
with d(a)

i the number of connections node i has with nodes in community
a and in (b, c) Σ(a)

in , Σ(a)
tot are the number of connections among nodes4 in

community a and the total number of connections nodes in community a
have. From Equation (5.5), we can write the change of modularity obtained
by moving a node i (that forms a community on its own) to class a to which
one of its neighbors belongs to:

∆QMod
A (`) =

Σ(a)
in + d(a)

i
m

−
(

Σ(a)
tot + di

m

)2

︸ ︷︷ ︸
new modularity

−
[modularity from a︷ ︸︸ ︷

Σ(a)
in
m
−
(

Σ(a)
tot
m

)2

−

modularity from i︷ ︸︸ ︷(
di

m

)2
]

︸ ︷︷ ︸
old modularity

4 Note that each edge is counted twice.

58 community detection

Figure 5.4: Evaluation of Louvain algorithm. The Louvain algorithm was run
100 times on a random graph with communities. The left plot reports
the histogram of the modularity obtained after each run. In the right
plot we selected 1000 random pairs and computed for all of them the
AMI and plotted the histogram.

Note that the order in which the merging are attempted matters to determine
the outcome and this is the random component of this algorithm. Figure 5.3
summarizes the two steps of the Louvain algorithm.

Computational complexity

The evaluation of ∆QMod
A (`) is performed in a constant number of opera-

tions, i.e. independent of n, k and it has to be performed at most |E | times
(each node for each of its neighbors). After the �rst iteration this operation
becomes even faster, and the algorithm’s complexity is hence O(|E |) mak-
ing it particularly appealing for large networks.

5.2.3 pitfalls of optimization approaches
De�ning communities according to a score function may seem a particularly
good strategy because it gives a common sense de�nition of communities,
expressing a property of a good class assignment. This approach has, how-
ever, strong algorithmic limitations.

• Optimization problems such as NCut, RCut and the modularity maxi-
mization are NP hard and only approximate solutions can be obtained
by e�cient algorithms. For this reason, we must inderline that the out-
put of the Louvain algorithm (or any other modularity maximization
technique) is not guaranteed to be the maximum modularity partition.

• There exists a large number of structurally di�erent con�gurations
having values of Q•A value very close to the maximum. Running mul-
tiple times an approximate algorithm looking for the optimum of Q•A
may output similar results in terms of the score, but corresponding to
rather di�erent label assignments, as shown in Figure 5.4. This makes
the use of greedy algorithms, such as Louvain, potentially unreliable.

5.3 inference in the dcsbm 59

• Talking about the modularity, it is known that even in the presence
of well de�ned clusters (such as cliques), optimizing the modularity
score over the number of clusters k, small communities may be joined
together, causing the so-called resolution limit. This is a consequence The resolution limit

on a ring of cliques
graph: the colour is
the assignment
obtained maximizing
the modularity

of the fact that the values of QMod
A are not directly comparable for

di�erent values of k. Even if formal results have been derived for the
popular modularity, similar e�ects are expected to be seen also for
other cost functions. To circumvent this problem it was introduced a
generalized modularity, depending on a positive regularizer γ:

QGMod
A (`; γ) =

1
4|E | ∑

i,j∈V

(
Aij − γ

didj

2|E |

)
δ(`i, `j).

Tuning the value γ it is possible to identify communities at di�erent
length scales, but this requires an ad hoc solution, depending, in gen-
eral, on the underlying graph.

An ER graph with a
partition in 34
communities and
modularity 0.52

• From the optimization perspective, communities can be de�ned even
on graphs with no community structure, such as Erdős-Rényi (ER) ran-
dom graphs. This is not only a philosophical problem, related to the
fact that a good CD algorithm should be capable of detecting whether
or not communities are present on the graph. In fact, considering for
instance the modularity, one expects that on ER graphs, any partition
satis�es QMod

A ≈ 0. It has however been shown that high modularity
partitions can be found on ER graphs, evidencing that the modularity
maximization may lead to over-�tting.

These problems altogether are severe limitations of the optimization ap-
proach to CD and justify the adoption of a di�erent strategy, based on infer-
ence from the Degree corrected stochastic block model (DCSBM). We will show
how Bayesian inference is able to overcome the aforementioned limitations
of optimization and how it is able to motivate their origin.

5.3 inference in the dcsbm
The Bayesian approach relies on the formulation of an inference problem
from a generative model of the network. In fact, we suppose that there exists
a model P(A|`) creating the adjacency matrix given the node partition into
communities and our goal is to estimate ` from an observation of A. The
Bayes formula then reads

The Bayes formula

Posterior︷ ︸︸ ︷
P(`|A) =

Likelihood︷ ︸︸ ︷
P(A|`)

Prior︷ ︸︸ ︷
P(`)

P(A)︸ ︷︷ ︸
Evidence

.

In CD we generally suppose a uniform prior, since no information is avail-
able on the community structure. We now de�ne the DCSBM model to gener-
ate a random graph with communities.

60 community detection

5.3.1 the degree corrected stochastic
block model

The DCSBM can be seen as a generalization of the con�guration model.

The degree corrected stochastic block model

De�nition 5.1. Let ` ∈ {1, . . . , k}n be the class label vector, where
k is the number of classes and P(`i = a) = πa and let C ∈ Rk×k be
a symmetric matrix with positive elements. Let θ ∈ Θ = [θmin, θmax]

be a random variable that encodes the intrinsic node connectivity, dis-
tributed according to ν, satisfying E[θ] = 1, E[θ2] = Φ = On(1). For
each node, θi is drawn independently at random from ν.

The entries of the matrix Aij = Aji are set to one independently at
random with probability

P(Aij = 1) = min
(

θiθj
C`i ,`j

n
, 1
)

,

and are equal to zero otherwise.

From a simple computation, one can see that the expected average degree
of node i is proportional to θi, i.e. E[di] ∝ θi. Consequently the vector θ =

(θ1, . . . , θn) can be used to produce any degree distribution on the graph.
The matrix C is the class a�nity matrix, generating the community structure.Interpreting the

DCSBM In fact, if the diagonal elements of C are larger than the o�-diagonal ones,5
it is more likely to be connected to someone in your own community than
to someone in another community. The vector π ∈ Rk is de�ned so that πa

is the expected fraction of nodes with label a.

Given the generative model of De�nition 5.1 the labels are indisputably
de�ned by the vector ` and the number of classes by k. Before discussing
how to perform inference according to this method, let us consider a very
important result about inference in the DCSBM.

5.3.2 information theoretic limits in
the dcsbm

Inference cannot be performed for any values of the entries of C. Suppose the
extreme case in which all entries of C are equal: the resulting graph is just
a realization of the con�guration model in which communities do not exist

5 Note that, if the converse is true, i.e. nodes get connected more often to nodes in a di�er-
ent community (e.g. adjective and nouns in a text), then we talk about disassortativity but
communities are still de�ned.

5.3 inference in the dcsbm 61

c
0

1

ov
easy: efficient
algorithms

information
theoretically
impossible

k = 2, 3

d h c
0

1

easy: efficient
algorithms

information
theoretically
impossible

hard

cannot
recognize
good
partition

k 4 (disassortative), k 5

Figure 5.5: Schematic representation of the phase transition in the sparse DCSBM.
The y axis represents the performance of reconstruction. Picture adapted
from Moore, The Computer Science and Physics of Community Detection.

and hence cannot be retrieved. Actually, it was proved that there should be
a minimal distance between the probability of connection within and across
community to allow the graphs to be statistically distinguishable. We con-
sider the case of k = 2 communities in which the diagonal entries of C are
cin, while the o�-diagonal are cout in which we have a proper phase transi-
tion, determined by the existence of a detectability threshold. We formulate
this formally in the following theorem.

The detectability
threshold

Theorem 5.1. Consider a graph generated by the DCSBM with k = 2 commu-
nities. Let the diagonal entries of C be cin and the o�-diagonal ones be cout and
denote with c = (cin + cout)/2 the expected average degree. Let the control
parameter α be

α = (c− cout)

√
Φ
c

, (5.6)

then detection is feasible if and only if α > 1.

In the case of k > 2 there are conjectures that state the existence of three
regions: undetectable in which it is impossible to make reconstruction; hard
in which if we initialize the Bayes estimator to the ground truth we could
obtain the good solution, but not for an arbitrary intial condition; easy in
which the communities can be recovered, as summarized in Figure 5.5.

5.3.3 dcsbm bayesian inference

Using the uniform prior and assuming θiθjC`i ,`j /n < 1 for all i, j,6 the pos-
terior distribution reads:

P(`|A) ∝ ∏
(ij)∈E

θiθj
C`i ,`j

n
· ∏
(ij)/∈E

(
1− θiθj

C`i ,`j

n

)

∝ exp

 ∑
(ij)∈E

log
(

C`i ,`j

)
+ ∑

(ij)/∈E
log
(

1− θiθj
C`i ,`j

n

) . (5.7)

6 This can be done without loss of generality in the limit for n→ ∞.

62 community detection

Note that the vector θ can be easily estimated from the degree distribution
and can be used as a known variable. Obtaining the marginal node proba-
bility from Equation (5.7), one can assign to each node the label maximiz-
ing the node marginal. A possible way to accomplish this task is to sample
from the distribution (5.7) using Monte Carlo Markov chains. The Bayes opti-
mal procedure is, however, typically quite expensive from the computational
viewpoint. Luckily, for sparse graphs, the asymptotically exact expression
of Pi(`i|A) can be e�ciently obtained using the cavity method discussed
in Chapter 3. The computational complexity of the cavity method for CD
scales as O(|E |k2), making it computationally e�cient in the sparse regime
in which c = On(1) (or, equivalently, |E | = On(n)). The main interest in
the cavity method, however, comes from the fact that it is asymptotically
exact on sparse graphs.

5.3.4 optimization vs model based: a sta-
tistical physics perspective

To conclude this section, let us relate the model-based and optimization-
based approaches.

As it was described in Section 5.2, de�ning communities as the solution
to an optimization problem makes a requirement on what a good class parti-
tion should be like, with no hypothesis on the underlying graph. This makes
it a seemingly good way of performing CD on arbitrary graphs. On the oppo-
site, designing an algorithm for CD inspired from DCSBM gives a good mathe-
matical control and, in some cases, information theoretic guarantees. Never-
theless, the model-based approach relies on some assumptions that are not
necessarily veri�ed on arbitrary graphs. This may lead to thinking of the
inference approach as a mere mathematical exercise. This section on the op-
posite argues that the model-based approach should be generally preferred
to the optimization one. In fact, the latter actually relies on some implicit hy-
pothesis on the matrix A and its limitations can be clearly interpreted from
a Bayesian perspective.

To simplify the discussion, let us consider the k = 2 class DCSBM. In this
case, letting σi = 1 if `i = 1 and σi = −1 if `i = 2, the posterior probability
P(`|A) ≡ P(σ|A) of Equation (5.7) can be rewritten for n→ ∞ as

P(σ|A) ∝ exp

{
∑

(ij)∈E
log
(

C`i ,`j

)
− 1

2 ∑
i∈V

∑
j/∈∂i

θiθj
C`i ,`j

n

}

5.3 inference in the dcsbm 63

∝ exp

{
∑

(ij)∈E
log(cin)

1 + σiσj

2
+ log(cout)

1− σiσj

2
− 1

2 ∑
i∈V

∑
j/∈∂i

θiθj

[
cin

n
1 + σiσj

2
+

cout

n
1− σiσj

2

]}

∝ exp

{
∑

(ij)∈E

1
2

log
(

cin

cout

)
︸ ︷︷ ︸

β

σiσj −∑
i∈V

σi ∑
j/∈∂i

θiθj
cin − cout

4n
σj︸ ︷︷ ︸

hi(σ)

}

∝ exp

{
∑

(ij)∈E
βσiσj −∑

i∈V
hi(σ)σi

}
≡ e−βH(σ). (5.8)

Equation (5.8) precisely corresponds to the Boltzmann distribution for the
Ising Hamiltonian with local �elds, depending on the con�guration σ. The
Bayesian approach is equivalent to �nding the magnetization m = 〈σ〉β,
associated to the HamiltonianH(σ). Finding the ground state ofH(σ), i.e.
the con�guration σ corresponding to its minimum, instead is equivalent to
�nding the maximum of the generalized modularity QGMod

A (`; γ), in fact, in
the large n limit for sparse graphs ∑j/∈∂i ≈ ∑j∈V and thus

E [H(σ)]

β
= ∑

i,j∈V

(
Aij −

2(cin − cout)

(cin + cout)β

E[di]E[dj]

m

)
σiσj,

which is closely related to the regularized modularity.

This observation puts us in position to make two very important remarks.
The most questionable assumption of the DCSBM is that of generating edges
independently at random. In terms of log-likelihood, this translates into a
sum over all graph edges, as shown in Equation (5.8). This sum is the same ap-
pearing in QGMod

A , QMod
A , QRCut

A and QNCut
A that can be associated to a gen-

erative model (di�erent from the DCSBM) in which the edges of G(V , E) are
also generated independently at random, evidencing how the functions Q•A
rely on some “silent” assumptions on the matrix A.

Furthermore, from a statistical physics perspective, the functions Q•A (even-
tually taken with a negative sign) can generally be considered as Hamiltoni-
ans, i.e. cost functions associated to a given label con�guration. In all cases
(also for the DCSBM), the Hamiltonian is what de�nes communities from ami-
croscopic perspective. Stating which de�nition is the best is a di�cult task
that we are not going to investigate. However it should be remarked that
what is essentially di�erent in the optimization and inference approaches
is how to retrieve the communities from the Hamiltonian: in one case they
are obtained from the marginals of the Boltzmann distribution, in the other
from the ground state energy. The Hamiltonian, or equivalently the cost
Q•A is what de�nes the concept of communities. The optimization approach,
however, only takes into account the minimum of the Hamiltonian, disre-
garding the rest of its pro�le. Consider two functions Q•A, one being convex
and the other having multiple minima with similar values of Q•A(`). These
two settings are clearly di�erent: in the �rst the label assignment is uniquely
de�ned by minimum of Q•A, whereas, in the second, several con�gurations
could be considered as almost equally good community structures. Taking

64 community detection

Feature 1

Fe
a
tu

re
 2

Figure 5.6: Left: a graph with two communities, highlighted with a di�erent color
code. Right: a 2 dimensional node embedding of the graph on the left.
The embedding dimensions are here denoted with as features.

only the minimum of the Hamiltonian means to disregard all other con�gu-
rations that may have, instead, a potentially great importance. The Bayesian
approach does not consider exclusively the minimum of Q•A, but the whole
energy landscape, giving a generally richer description of the problem.

5.4 spectral clustering
Networks are complex mathematical entities that are hard to represent hence
to deal with. The di�culty of de�ning communities is a direct consequence
of this complexity of representation. A powerful method to perform network
analysis that can also be adapted to CD is to perform an embedding, i.e. in
providing a representation of the network in a Euclidean space.

Node embedding

Given a graph G(V , E), a node embedding consists in identifying a
mapping f : V → Rd, where d is the embedding dimension. Each
node i is associated with a vector xi ∈ Rd, called embedding vector.

An embedding is de�ned so that nodes that are structurally similar (for
instance, that belong to the same community) are represented with similar
vectors. In Figure 5.6 we give a pictorial representation of a node embedding
applied to a graph with two communities. Once the graph has been repre-
sented as a set of points in a Euclidean space, CD simply translates into clus-
tering, i.e. the objective of grouping together points in a high dimensional
space. Several algorithms exist to accomplish this task and can be dividedClustering

in two groups: those in which partitions are attributed solving an optimiza-
tion problem such as k-means, k-medoids, expectation maximization; those in
which boundaries between clusters are drawn where the density of points
is minimal, such as DBSCAN and OPTICS.

5.4 spectral clustering 65

In this section we introduce Spectral clustering (SC) that is one of the most
well studied class of algorithms to perform embeddings for CD and it has
strong relations with both the optimization and Bayesian approaches.

5.4.1 vanilla spectral clustering
In SC algorithms the embeddings are obtained with the eigenvectors of a
suited graph matrix representation, M. De�ning what suited means is a
hard task and several possible choices are plausible. One possibility would
be M = A, the adjacency matrix, while one of the most popular (but not
necessarily one of the best) if the graph Laplacian matrix L = D − A. SC
bene�ts from solid theoretical foundations and high explainability. All SC al-
gorithms can be reduced to a very similar structure7 that we summarize in
Algorithm 5.1. Here the number of clusters k is required as an input but, as
we will see in the next sections, SC algorithms provide methods to estimate
k in a theoretically well grounded way. The basic intuition of SC is that some
eigenvectors of M are informative and carry information about the graph
community structure. These eigenvectors are typically considered to be as
many as the number of communities.

Algorithm 5.1 : Spectral clustering
Input : Dataset with n items, k number of clusters
Output : ` ∈ {1, . . . , k}n label assignment

1 begin

2 De�ne suited matrix representation of the dataset M ∈ Rn×n;
3 Stack the k largest (or smallest) eigenvalues of M in the columns

of X ∈ Rn×k (Embedding);
4 Estimate community labels ` with a small dimensional clustering

algorithm performed on the rows of X (Clustering) ;
5 return `

6 end

The complexity of Algorithm 5.1 scales withO(|E |k2) that is the number
of operations required to compute the eigenvectors. The clustering step typ-
ically requires a lower number of operations. This complexity thus scales
well with the matrix size, but may become prohibitive when considering
graphs with a very large number of communities. We proceed motivating
Algorithm 5.1, describing its relation with other techniques adopted for CD.

7 Note that this is not a strict rule and there exist some SC that follow a structure that is similar
to the one of Algorithm 5.1, but it is not exactly the same.

66 community detection

5.4.2 the relation with optimization
approaches

SC has a strong relation with optimization algorithms. We explicitly derive
this formal relation for theRatioCut optimization problem and brie�y overview
the results for other optimization functions.

Lemma 5.1. Consider a node partition ` on an undirected and un-
weighted graph with adjacency matrix A. Let L = D− A be its associ-
ated graph Laplacian matrix. Let H ∈ Rn×k be the matrix with entries
Hia = δ`i ,a/

√
Va, where Va = |Va|. Then

QRCut
A (`) =

1
2

Tr(HT LH).

Proof. Exploiting Lemma 4.1, we can write(
HT LH

)
aa

(a)
= hT

a Lha

=
1
2 ∑

i,j∈V
Aij
(

Hia − Hja
)2

=
1
2

k

∑
α=1

k

∑
β=1

∑
i∈Vα

∑
j∈Vβ

Aij

(
δα,a√

Va
−

δβ,a√
Va

)2

=
1

2Va

k

∑
α=1

k

∑
β=1

∑
i∈Vα

∑
j∈Vβ

Aij
(
δa,α + δa,β − 2δa,αδa,β

)
(b)
=

1
Va

 k

∑
β=1

∑
i∈Va

∑
j∈Vβ

Aij − ∑
i∈Va

∑
j∈Va

Aij

=

1
Va

∑
β 6=a

∑
i∈Va

∑
j∈Vβ

Aij

=
1

Va
∑

i∈Va

∑
j/∈Va

Aij ,

where in (a) in denoted with ha the a-th column of H and in (b)
we exploited that A is symmetric. To conclude the proof, we simply
recall the de�nition of the RatioCut

QRCut
A (`) =

1
2

k

∑
a=1

1
Va

∑
i∈Va

∑
j/∈Va

Aij

=
1
2

k

∑
a=1

(
HT LH

)
aa

=
1
2

Tr
(

HT LH
)

.

5.4 spectral clustering 67

The relation between
SC and the RatioCut
cost function

Lemma 5.1 puts in direct relation the optimization of the RatioCut func-
tion with the graph Laplacian matrix. Yet, however we may formulate it, this
problem is still NP-hard, hence it cannot be easily solved. The SC approach,
however, allows one to obtain an approximate solution, by relaxing the op-
timization problem from a discrete set to the whole real axis. First notice
that HT H = Ik, then the relaxation of the RatioCut optimization problem is
obtained by solving

Relaxed optimizationX = arg min
H∈Rn×k : HT H=Ik

Tr(HT LH) . (5.9)

The solution of this optimization problem is the matrix X storing in its
columns the k eigenvectors of L with smallest eigenvalues. We stress that
this is not an exact solution because the optimization problem is not run
over all the discrete values that H can take, but over all the real space. To
summarize, with reference to Algorithm 5.1, here we choose M = L and
extract the k smallest eigenvalues of L to obtain the embedding.

Similarly to the derivation detailed above, one can show that the Normal-
ized Cut can be approximated by SC using the k eigenvectors associated
with the smallest eigenvalues of Lrw = In − D−1A, or equivalently the
k largest of D−1A. Often, instead of considering Lrw the matrix Lsym =

In − D−1/2AD−1/2 is preferred. This matrix has the same eigenvalues of
Lrw and its eigenvectors are closely related but it has the advantage of being
symmetric. By relaxing the modularity, instead, one can de�ne a SC algo-
rithm that exploits the eigenvectors of the modularity matrix A− ddT

2|E | that
are closely related to the ones of the adjacency matrix itself.

5.4.3 a random matrix perspective
The previous section justi�ed SC from the perspective of optimization algo-
rithms. We now show its relation with random generative models. We will
here consider the particular case of a graph generated from the DCSBM of
De�nition 5.1 model with k = 2 classes and and a homogeneous degree
distribution. This choice is only made for simplicity. We will then study the
spectral properties of the adjacency matrix of a graph generated from this
model. We use in particular the notation Cab = cin if a = b and cout other-
wise. The �rst step consists in writing the random matrix A as the sum of
its expectation and white noise:

A = E[A]︸ ︷︷ ︸
expectation

+ X︸︷︷︸
white noise

.

The expectation (E[A])ij = C`i ,`j /n is a low rank matrix with only two
eigenvalues that are non-zero. The leading one equal to c = (cin + cout)/2
(the expected average degree) with eigenvector 1n and the second one equal
to (cin − cout)/2 with eigenvector σ, where σi = 1 if i ∈ V1 and σi = −1

68 community detection

Figure 5.7: Visualization of spectral properties of the adjacency matrix. Top
left panel: spectrum of the centered adjacency matrix X. Top right panel:
spectrum of the adjacency matrix A with a zoom inset on the largest iso-
lated eigenvalues. Bottom panel: two dimensional embedding obtained
from the eigenvectors associated to the two largest eigenvalues of A
that correspond to the isolated ones shown in the inset. The color code
refers to the ground truth community label of the generative model.

else. The matrix X instead has zero mean, �nite variance and is a noise ma-
trix. If c→ ∞ – i.e. , if we are in a dense regime – the law of the eigenvalues
of X converges in distribution to the semi-circle Wigner law, bounded be-
tween −2α and 2α, as shown in the left panel of Figure 5.7. Now, we have
two matrices, E[A] and X of which we know the spectral properties, but
what can we say about their sum? Bauer-Fike theorem comes to help us
�nding an answer

Theorem5.2 (Bauer-Fike theorem for Hermitian matrices). Consider
a Hermitian matrix Ã and matrix X. Letting µ be an eigenvalue of
Ã + X, then there exists an eigenvalue λ of Ã so that

|λ− µ| ≤ ρ(X),

where ρ(·) denotes the spectral radius.

5.4 spectral clustering 69

In simple words, this theorem provides a bound to how much the eigen-
values of a perturbed matrix can di�er from those of its unperturbed version.
From this we know that the maximal distance between the eigenvalues of
A and the eigenvalues of E[A] is, at most, equal to ρ(X) = 2

√
c + on(

√
c)

with high probability. The spectrum of the matrix A will be composed by two
eigenvalues coming from E[A] that are close to the eigenvalues of E[A]. We
call these eigenvalues isolated. The remaining ones are the bulk eigenvalues
and follow the Wigner semi-circle law.

Isolated and bulk
eigenvalues

The eigenvectors associated with the isolated eigenvalues of A will be
strongly correlated with the eigenvectors of E[A]. These eigenvectors, how-
ever, are piece-wise contact and in particular, have the same value for all
nodes in the same community. Recall in particular the de�nition of σ. These
eigenvectors thus project each node to a point in a low dimensional space
that depends on the community structure, as shown in the lower panel of
Figure 5.7. It is very important to stress that all this argument holds if the
expected average degree c goes to in�nity. In this case, the isolated eigenval-
ues are of orderO(c) and the perturbation is of orderO(

√
c). Consequently,

the relative variation scales as O(c−1/2) and vanishes only for graphs that
are su�ciently dense. As we will discuss in the next paragraph, this is not
the case for sparse graphs.

Remark

The argument we made can be extended to an arbitrary number of
communities k and shows why in SC the embedding dimension is
often chosen to be equal to the number of classes. In fact, the number
of isolated informative eigenvalues equals the rank of E[A] that is
equal to k. Now, the fact that these eigenvalues are isolated – i.e. far
from all others – is fundamental for SC to work well. If this is not the
case, it means that the noise – represented by the bulk – “covers” the
information contained in the isolated eigenvalues and reconstruction
is not feasible.

In conclusion, the random matrix approach motivates SC by showing that
the low-rank mesoscale structure of a graph with communities can be re-
covered from few eigenvectors of a proper graph matrix representation. We
showed the argument �ow for k = 2 classes and a homogeneous degree dis-
tribution, but everything can be extended to a more general scenario. More-
over, the same approach can be used – even if it is mathematically more
challenging – to the use of other matrices, such as D − A, or D−1A, with
results that are qualitatively very similar.

5.4.4 spectral clustering in sparse graphs
As we mentioned in the previous section, the random matrix approach works
well when considering dense graphs, but the theoretical results do not hold

70 community detection

0 5 10

A

0.0 0.5 1.0

B

2 0 2

C

1.0 0.5 0.0 0.5 1.0

D

Figure 5.8: Spectral behavior of graph matrix representations in the sparse

and dense regimes. We consider two graphs with two communities
with a large (panelsA and B) and a small (panelsC andD) average degree.
In the panels A and C we show the spectrum of the adjacency matrix A
and in panels B and D the spectrum of D−1/2 AD−1/2. In the case of
dense graphs (A and B), we highlighted (and zoomed) the two isolated
eigenvalues. For sparse graphs, these eigenvalues do not exist.

in the sparse regime in which the expected average degree is independent of
the graph size, i.e. c = On(1). Now, this is not only a theoretical limitation
as shown in Figure 5.8 in which we show that the well behaved spectral
behavior of A and D−1/2AD−1/2 in the dense regime is not replicated in the
sparse one. In the sparse regime that characterizes most real-world networks,
SC is known to be hard to deploy. Yet, we here provide three choices of M
– referring to Algorithm 5.1 – that recently proved to be very e�cient to
perform SC in sparse (but also dense) graphs.

The non-backtracking matrix

As we intuitively hinted in Chapter 2, the adjacency matrix naturally appears
when we perform the naïve mean �eld (NMF) approximation of a probability
distribution, while in Chapter 3 we showed that the non-backtracking ma-
trix naturally appears when using the belief propagation (BP) or cavity ap-
proximation. The NMF is appropriate on dense graphs and – intuitively – the
spectrum of A is well behave for these graphs and M = A is a good choice
for SC. This is not true for sparse graphs, as we brie�y showed in the previous
section. It can be shown that the non-backtracking matrix, instead, is a good

5.4 spectral clustering 71

2 0 2 4
Real()

2

1

0

1

2
Im

ag
(

)

Figure 5.9: Non-backtracking matrix spectrum in the complex plane. Scatter
plot of the real vs imaginary part of the eigenvalues of B for a graph
obained from the DCSBM model with k = 2 communities in the sparse
regime. The blue dots are the eigenvalues of the matrix, while the orange
lines are the theoretic prediction as per Theorem 5.1.

choice for M, given that BP is asymptotically exact on sparse graphs. Let us
�rst recall the de�nition of the non-backtracking matrix B ∈ [0, 1]2|E |×2|E |:

The
non-backtracking
matrix

B(ij),(kl) = δjk(1− δik). (5.10)

Each index of B corresponds to directed edge of G(V , E) even if the graph
is undirected. The entries are non zero when they correspond to two edges
that are adjacent but they are non-backtracking, i.e. B(ij),(ji) = 0. The spec-
trum of the matrix B can be divided, even in the sparse regime, into isolated
and bulk eigenvalues, as shown in Figure 5.9. Note that, since B is not Her-
mitian, its eigenvalues are de�ned on the complex plane. In particular, all
isolated eigenvalues are real, while the bulk one may have a non-zero imag-
inary part. We can state this result formally as per the following theorem.

Theorem 5.3. Let G(V , E)be a graph generated from the DCSBM of
De�nition 5.1. Denote with λp(·) the p-th largest eigenvalue of amatrix
and with Π = diag(π) ∈ Rk×k. Suppose that:

• CΠ1k = c1k where c = On(1) is the expected average degree

• all eigenvalues of CΠ are so that λp(CΠ)Φ > cΦ.

Then, the following relations are satis�ed with high probability:

∀ p ∈ [k], λp(B) = λp(CΠ)Φ + on(1)

∀ p > k, |λp(B)| ≤
√

cΦ + on(1).

72 community detection

Let us take a moment to comment this theorem. Firstly, one can easily ver-
ify that the assumption CΠ1k = c1k implies that the expected average de-
gree c does not depend on the class, regardless of its size and of how they are
connected. Secondly, the bound shows that the position of the isolated eigen-
values of B only depend on CΠ hence on the expectation of A,8 while the
bulk eigenvalues are con�ned by a circle in the complex plane. This bound is
tight for n→ ∞ and c = On(1) so it works well also in the sparse regime. Fi-
nally, in the case of k = 2 communities of equal size, λ1(CΠ) = c = cin+cout

2
and λ2(CΠ) = c = cin−cout

2 . The eigenvalue λ2(B) is isolated if

cin − cout

2
Φ ≥

√
cΦ,

that implies

(c− cout)

√
Φ
c
≥ 1,

that is precisely the detectability threshold of the DCSBM as per Theorem 5.1.
Consequently, the non-backtracking matrix can be used to detect communi-
ties as soon as theoretically possible. To conclude, we must still solve a prob-
lem: the size of B is larger than n, hence we need to make a pre-processing
on the eigenvectors before to obtained an embedding X ∈ Rn×k. Recalling
the de�nition of T ∈ Rn×2|E given in Chapter 2, Ta,(ij) = δia Aij, for any
g ∈ R2|E | we let gin = Tg. By construction the vector gin ∈ Rn and it
can be used to de�ne a SC algorithm with the eigenvectors of B. Moreover,
still referring to Chapter 2, we recall that gin can be extracted by the �rst n
entries of the matrix Bp de�ned in Equation (3.11) that has size 2n× 2n and
it can thus be e�ciently computed on large graphs.(

A −In

D− In 0

)
︸ ︷︷ ︸

Bp

(
gin

gout

)
= γ

(
gin

gout

)
.

The Bethe-Hessian matrix

We now show that Bp and the vector gin are strongly related with an n× n
matrix called Bethe-Hessian9

Agin − gout = γgin

(D− In)gin = γgout

that leads to

Agin − 1
γ
(D− In)gin = γgin

8 As an exercise, try to show that ∀ p ∈ [k], λp(CΠ) = λp(E[A]).
9 This names comes from the fact that it can be interpreted as the Hessian matrix of the Bethe

free energy of an Ising model on G(V , E) at the paramagnetic point.

5.4 spectral clustering 73

0 5 10 15 20 25
(H (B))

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
(D A)

Figure 5.10: Spectra of the Bethe-Hessian and Laplacianmatrices on a sparse

graph with communities. The top row shows the spectrum of H√B
for a graph with k = 2 communities generated from the DCSBM and
expected average degree equal to 5. In blue we evidence the two isolated
negative eigenvalues. For the same graph, the bottom plot shows the
histogram of the eigenvalues of the graph Laplacian L = D− A = H1.

and thus [
(γ2 − 1)In + D− γA

]︸ ︷︷ ︸
Hγ

gin = 0. (5.11)

The matrix Hγ is the Bethe-Hessian matrix and gin is an eigenvector of Hγ

is γ is an eigenvalue of B. Note that for Hγ=1 = D − A, the graph Lapla-
cian. Like the matrix L, the informative eigenvectors are associated with the
smallest eigenvalues of Hγ and it has been shown that for some choices of
γ, the algorithmic threshold of a SC algorithm based on Hγ coincides with
the theoretical detectability threshold of Theorem 5.1. A particularly inter-
esting choice is the one γ =

√
ρ(B) that corresponds to the radius of the

bulk of B, at least for random networks. For this choice SC provably achieves
the detectability threshold and, interestingly, only the isolated informative
eigenvalues of Hγ are negative, as shown in Figure 5.10. This provides us
with a method for estimating the number of communities that is based on
counting the number of negative eigenvalues of H√

ρ(B) and then use the
related eigenvectors to perform SC.

74 community detection

0.4 0.2 0.0 0.2 0.4 0.6
(L (B) 1)

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
(D 1/2AD 1/2)

Figure 5.11: Spectra of the regularized and non-regularized symmetric Lapla-

cian matrices on a sparse graph with communities. The top row
shows the spectrum of Lsym√

B
for a graph with k = 2 communities gen-

erated from the DCSBM and expected average degree equal to 5. In blue
we evidence the two isolated eigenvalues, while the red dash-dotted
line is located at ρ(B)−1/2, the expected right edge of the bulk. For the
same graph, the bottom plot shows the histogram of the eigenvalues of
the graph symmetrized Laplacian Lsym = D−1/2 AD−1/2 = Lsym

1 .

The regularized Laplacian matrix

As a �nal method, we still introduce one more matrix can can be used to
for SC in sparse graphs. Let Dτ = D + τ In, then, starting from the Bethe-
Hessian matrix[

(γ2 − 1)In + D− γA
]

gin = 0

Dγ2−1gin = γAgin

D1/2
γ2−1gin︸ ︷︷ ︸

y

= γD−1/2
γ2−1 Agin

y = γD−1/2
γ2−1 AD−1/2

γ2−1 y

Lsym
γ y =

1
γ

y,

where we introduce the normalized Laplacian matrix Lsym
γ = D−1/2

γ2−1 AD−1/2
γ2−1 .

Also in this case, the choice γ =
√

ρ(B) provides good performances for
spectral clustering and this is a valid choice for SC in sparse graphs. Fig-

5.5 conclusion 75

ure 5.11 compares the spectrum of Lsym√
ρ(B)

with the one of Lsym
1 that simply

corresponds to the classical symmetric Laplacian matrix.

5.4.5 final remarks on spectral clus-
tering

SC is a very relevant class of algorithms for CD and beyond. Several matri-
ces can be deployed to obtained meaningful representations of the graph
and this is at the same time a strength and a weakness of this approach.
There is not a unique matrix “to rule them all” and if a speci�c choice does
not produce good results, then one can look in the literature for di�erent
proposals, once the problem has been identi�ed. Another notable point is
the solid theoretical framework that can be used to characterize these algo-
rithms, making them particularly appealing. At the same time, these results
are typically derived for speci�c generative models (such as the DCSBM) and
may not generalize well to real-world graphs, for which additional caution
is needed. Finally, the computational complexity of spectral algorithms typ-
ically scales as O(|E |k2), the number of operations required to compute k
eigenvectors of a matrix with |E | non-zero entries. This complexity allows
one to use these algorithms on very large sparse graphs (due to the linear
scaling with |E |) but they are unsuited when approaching graphs with a
large number of communities.

5.5 conclusion
CD is a very important task in graph data mining but it is equally very chal-
lenging. This is primarily due to the fact that de�ning communities is hard
per se and then, given a de�nition of community it is often hard to �nd an
e�cient algorithm to detect them. Whenever approaching CD it is important
to remind that di�erent algorithms may look for substantially di�erent de�-
nitions of communities and may be suited on some graphs, but not on others
due to their limitations. In this chapter we gave a non-extensive overview of
some of the most signi�cant methods together with their limitations. This
brief introduction should raise in you a the need critical thinking when de-
ploying a CD algorithm so to identify its potential weaknesses and interpret
its results. This can be done, in practice, by deploying simultaneously several
CD algorithms and compare the results to obtain an complete overview of the
problem at hand. This is the approach that we will follow in the notebooks.

76 community detection

5.6 references
• Fortunato: Community detection in graphs

This is a fundamental (even if not so recent) review of CD algorithms. It
has very interesting insights to frame the problem on a broad picture

• Von Luxburg: A tutorial on spectral clustering
This is another very important review on spectral clustering, relating
it to optimization problems and with some useful interpretations of
SC.

• Moore: The computer science and physics of community detection: Land-
scapes, phase transitions, and hardness
This is am article with a rather pedagogical intent on inference in the
DCSBM and its relation with optimization problems with a statistical
physics perspective.

6
GRAPH EMBEDDINGS

6.1 Graph embeddings . 77
6.2 Word2Vec . 78

6.2.1 Skip-Gram . 78
6.2.2 De�nition of a loss function 79
6.2.3 Training the model parameters 79

6.3 Node2Vec . 81
6.4 Conclusion . 82
6.5 References . 83

6.1 graph embeddings

Embeddings allow
one to more simply
represent graphs

As we have seen all along this course, graphs are a very powerful data rep-
resentation tool, capable of properly modeling complex interaction patterns
among the items of a dataset. However, this complexity makes any operation
on graphs intimately hard to even de�ne. Think for instance for instance of
the problem of de�ning the distance between two nodes, or two graphs or
a concept of continuity on graph: all these problem have been approached
and have solutions, but they are not unique and they need to be de�ned.
This is because graphs live in a high dimensional non-Euclidean space in
which most mathematical operations are not easily de�ned. Consequently,
a powerful method to deal with graph is to project them into an Euclidean
space. This operation is called embedding and Spectral clustering (SC) actu-
ally exploits an embedding that leverages on an appropriate graph matrix
representation. Now, there is not a unique way to embed graphs and the
embedding itself should be de�ned so that it preserves some relevant graph
properties. Nonetheless, once it is de�ned, we move to a space in which
several mathematical operations and algorithms (such as clustering) can be
deployed. We can formally de�ne a node embedding as follows

Node embeddings are at the basis of graph neural networks and allow one
to provide meaningful representations of complex objects. In the remainder
we describe the Node2Vec algorithm, that is one of the most popular al-
gorithms to obtain non-linear node embeddings. Note that this embedding
method can also be used to perform Community detection (CD) as well, by
performing clustering on the embedded space, equivalently to SC.

77

78 graph embeddings

Figure 6.1: Visual representation of the Skip-Gram algorithm. The central
word is highlighted in blue, while the context words are surrounded
by white boxes. In this example the window size is set equal to 2. On
the right we have all the pairs (central, context) that are obtained scan-
ning through the document that constitute the output of the Skip-Gram
algorithm. Picture taken from mccormickml.com/2016/04/19/word2vec-
tutorial-the-skip-gram-model/.

6.2 word2vec
TheNode2Vec algorithm builds on another (even more popular) algorithm,
called Word2Vec. This algorithm was introduced to embed the words ap-
pearing in a text and capturing the semantic similarity between them. For
instance, if i = milk, j = cow, k = gun, for the corresponding embedding
vectors, we expect that xT

i xj is large (milk is related to cow), while xT
i xk is

small. Let us now detail the method to obtain this desiderata.

6.2.1 skip-gram

De�ning context
words

If our goal is to provide similar representations to words that appear in sim-
ilar contexts, we must �rst de�ne what contexts are and we must do so in a
simple, content-agnostic way. To do so, the skip-gram algorithm takes an ar-
bitrary word of the text and considers the surrounding ones (within a certain
distance, called window size) as the context of that word. To give an increas-
ing weight to the words that are closer to the central one, one may draw for
each word the window size from a uniform distribution between 1 and a max-
imal value. The Skip-Gram algorithm then takes a text as input and a value
of the (maximal) window size and outputs a list of pairs (center, context)
that relate every words appearing in the text with the surrounding ones.
Figure 6.1 depicts the Skip-Gram procedure. If two words a, b are closely

6.2 word2vec 79

related – such as gold and crown –, one expects the pair (a, b) to appear sev-
eral times. However, thinking of the case of synonyms, one can expect them
to rarely appear in the same context, even if they have the same meaning.
The Skip-Gram algorithm, however, can properly deal also with this type of
similarity because synonyms will be surrounded by similar context words,
thus allowing one to recover their similarity.

6.2.2 definition of a loss function
Now that we have identi�ed context words, we want to de�ne a loss func-
tion of the embedding vectors that promoted the alignment of for the pairs
(central, context). Let i be an index running over all words in the text and
let π(i) be a function mapping word i to its position in the dictionary. Then,
letting Ci be the context of word i, we write

L = − ∑
i∈T

∑
j∈Ci

log σ
(

xT
π(i)xπ(j)

)
,

where T is the set of words appearing in the text, σ(·) is the sigmoid func-
tion1 and xa ∈ Rd is the embedding of the word a. Now, minimizing this loss
function we promote the alignment between central and context words. This
loss function actually has a trivial minimum that is obtained for xa = 1d for
all words a. This because it lack an adversarial term, like the one appearing
in the modularity cost function.

We add this term with a technique called negative sampling. For each word
i ∈ T , we sample a set of Ri of random words sampled from the text and
write the following loss function

Negative samplingL = − ∑
i∈T

[
∑
j∈Ci

log σ
(

xT
π(i)xπ(j)

)
+ ∑

j∈Ri

log σ
(
−xT

π(i)xπ(j)

)]
. (6.1)

This newly added term takes random pairs of words and gives a gain in the
loss function when they are misaligned, thus preventing the trivial minimum.
We now detail the strategy to optimize this cost function.

6.2.3 training the model parameters
The cost function is optimized with stochastic gradient descent and back-
propagation. This is a modi�ed version of gradient descent that is a method
to optimize a multivariate function. Given a random argument of the func-
tion to optimize, the idea is to move in the direction of the negative gradient
of the loss function, as depicted in Figure 6.2. This means

xnew = xold − η∇L(xold),

80 graph embeddings

Figure 6.2: Visualization of gradient descent. Picture taken from
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-
gradient-descent-algorithm-work-in-machine-learning/.

where η > 0 is the learning parameter. Now, computing the gradient may
be unpractical. To simplify things we let L = ∑i∈T Li and we update the
weight xi with the value of the gradient of Li (and not of the whole function
L) with respect to xi.

∂Li

∂xπ(i)a
= −

∑
j∈Ci

σ′
(

xT
π(i)xπ(j)

)
σ
(

xT
π(i)xπ(j)

) xπ(j)a − ∑
j∈Ri

σ′
(
−xT

π(i)xπ(j)

)
σ
(
−xT

π(i)xπ(j)

) xπ(j)a

 ,

(6.2)

where σ′ denotes the derivative of the sigmoid function. One can easily ver-
ify that the following relation holds

σ′(x) = σ(x)σ(−x).

Plugging these relations in Equation (6.2) we obtain

Stochastic gradient
descent

gπ(i)a =
∂L

∂xπ(i)a

= −
[

∑
j∈Ci

σ
(
−xT

π(i)xπ(j)

)
xπ(i)a + ∑

j∈Ri

σ
(

xT
π(i)xπ(j)

)
xπ(j)a

]
. (6.3)

By iteratively updating the weights, we �nd an approximation of a minimum
of the loss function L that provides us with a good representation of the
words. Algorithm 6.1 summarizes the Word2Vec algorithm.

1 The sigmoid function is σ(x) = (1 + e−x)−1. This is an increasing function, bounded be-
tween 0 and 1.

https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/

6.3 node2vec 81

Algorithm 6.1 : Word2Vec
Input : Text T with N words, dictionary with n words, embedding

dimension d, number of training epochs nepochs, learning
rate η, window size ω, number of negative samples m

Output : {xa}a∈[n] word embedding vectors in Rd

1 begin

2 Randomly intialize xa for all a ∈ [n] ;
3 for epoch = 1, . . . , nepochs do

4 for i ∈ T do

5 Draw w uniformy at random w← U (1, ω);
6 Get Ci for window width w with Skip-Gram;
7 GetRi selecting m random words from the text;
8 Compute gπ(i) as per Equation (6.2);
9 Update xπ(i) ← xπ(i) − ηgπ(i)

10 end

11 end

12 return {xa}a∈[n]
13 end

6.3 node2vec

Translating a graph
into a text

Let us now go back to graphs. TheNode2Vec algorithm uses theWord2Vec
algorithm to obtain a node embedding by �rst “translating” the graph into a
text and then embedding its words, corresponding to the graph nodes. The
text is obtained performing random walks on the graph. Random walks are
are paths made of sequences of adjacent nodes of the type (v1, v2, v3, . . . , vT),
where T here denotes the walk length. Neighboring nodes are in contact
and, in some sense, belong to the same context. Random walks are hence
use to probe the network structure and to extract information out of it. The
strategy is to de�ne random walks with memory, with the de�nition of two
parameters.

Suppose that the walker moves from i to j then it is at distance 1 from i. By
performing a further step there are three possibilities: moving to a node that
is at distance 2 from i, moving to a node that is at distance 1 from i or going
back to i itself. These three options are taken with di�erent probabilities that
are proportional to 1/p, 1/q and 1 respectively. The values of p and q are
an input of the algorithm. For p = q = 1 we have a simple random walk
without memory. The walking strategy is displayed in Figure 6.3. How to
choose the parameters p and q? The value of p determines the probability
of immediately returning to node the walker came from. Choosing large
values of p thus prevents the walker from bouncing back and forth between
the same nodes and instead it encourages faster exploration of the network.
This is exactly what happens with non-backtracking random walks and it is
particularly useful for sparse graphs in which, given that each node has very

82 graph embeddings

Figure 6.3: Visualization of the random walk strategy of Node2Vec. In the
last step the random walker moved from u to v1. In the next step it will
move: i) back to u with a probability proportional to 1/p; ii) to v3 or
v4 with a probability proportional to 1/q, since they are at a distance
2 from u; iii) to v2 with a probability proportional to 1 since v1 is at a
distance 1 from both u and v1.

few neighbors, it is likely to move back to the node of origin. The value of q
determines to what extent the random walker is inclined to visit nodes that
are further away from the original one. In particular, if q > 1 the walker is
more inclined to remain close to u. This kind of transition accounts for the
triangles that may be present in the network and attributes a higher chance
to visit nodes that are tightly connected among them. On the other hand,
small values of q will lead to avoid these paths and to more rapidly explore
the rest of the network. This has a direct impact on the type of information
stored in the embedding, as shown in Figure 6.4. This plot shows the result
of clustering based on the embedding obtained on the same graph for p = 1
and q = 0.5, 2, respectively. For q = 0.5 the algorithm is more prone to �nd
tightly connected communities, while for q = 2 it groups the node according
to structural equivalence.

6.4 conclusion
Graph embedding methods are very powerful to analyze and represent rela-
tional data. In this chapter we introduced the Node2Vec algorithm that is
one of the most in�uential methods developed in the past 10 years. Given
its dependence on Word2Vec, it is rather fast and its complexity scales
as O(|E |mdω). Moreover, note that, similarly to Node2Vec, a wealth of
algorithms have explored similar strategies to exploit the Word2Vec al-
gorithm and provide meaningful representations to complex mathematical
objects. You should then see this as a relevant example of a widely used
pipeline to de�ne representation learning algorithms.

6.5 references 83

Figure 6.4: Color coding according to the embedding obtained with two dif-

ferent values of q of the Node2Vec algorithm. The input graph
shows the co-appearances of characters in Les Misérables. For the top
plot q = 0.5, while for the bottom plot q = 2. Picture taken from Grover,
Leskovec, node2vec: Scalable Feature Learning for Networks.

6.5 references
• Mikolov, Sutskever, Chen, Corrado, Dean: Distributed representations
of words and phrases and their compositionality
This is the paper in which Word2Vec was introduced

• Grover, Leskovec: node2vec: Scalable feature learning for networks
This is the paper in which Node2Vec was introduced

	Contents
	Acronyms
	Symbols
	1 temporal graphs
	1.1 Why temporal graphs?
	1.2 Representing temporal graphs
	1.3 Measuring proximity graphs
	1.4 Properties of temporal graphs
	1.5 Conclusion
	1.6 References

	2 Epidemics on networks
	2.1 Epidemics
	2.1.1 Epidemic modeling
	2.1.2 The epidemic threshold

	2.2 Epidemic modeling on networks
	2.2.1 The state evolution equation
	2.2.2 Naïve mean field
	2.2.3 The reproductive number with naïve mean field
	2.2.4 Graph structure and reproductive number
	2.2.5 From theory to practice: epidemic mitigation

	2.3 Extensions
	2.4 References

	3 Cavity method
	3.1 Sparse and tree-like graphs
	3.1.1 Locally tree-like graphs
	3.1.2 Conditional independence

	3.2 Factorizing probability distributions on trees
	3.2.1 Cavity method on tree-like graphs

	3.3 The non-backtracking matrix
	3.4 An application to epidemics
	3.5 Efficiently computing the spectral radius of B
	3.6 Conclusion
	3.7 References

	4 Graph Fourier transform
	4.1 The Fourier transform
	4.1.1 Deriving the Fourier transform

	4.2 The graph Fourier transform
	4.2.1 Heat diffusion on graphs
	4.2.2 Decompose a signal on the graph Fourier modes
	4.2.3 Frequencies on graphs
	4.2.4 Some basic spectral properties of the graph Laplacian

	4.3 Graph signal processing
	4.3.1 Tikhonov regularization
	4.3.2 Filtering

	4.4 Conclusion
	4.5 References

	5 Community detection
	5.1 Community detection
	5.1.1 Defining communities
	5.1.2 The number of communities
	5.1.3 Comparing partitions
	5.1.4 Computational complexity

	5.2 Optimization approaches
	5.2.1 Some definitions
	5.2.2 Louvain algorithm
	5.2.3 Pitfalls of optimization approaches

	5.3 Inference in the DCSBM
	5.3.1 The degree corrected stochastic block model
	5.3.2 Information theoretic limits in the DCSBM
	5.3.3 DCSBM Bayesian inference
	5.3.4 Optimization vs model based: a statistical physics perspective

	5.4 Spectral clustering
	5.4.1 Vanilla spectral clustering
	5.4.2 The relation with optimization approaches
	5.4.3 A random matrix perspective
	5.4.4 Spectral clustering in sparse graphs
	5.4.5 Final remarks on spectral clustering

	5.5 Conclusion
	5.6 References

	6 Graph embeddings
	6.1 Graph embeddings
	6.2 Word2Vec
	6.2.1 Skip-Gram
	6.2.2 Definition of a loss function
	6.2.3 Training the model parameters

	6.3 Node2Vec
	6.4 Conclusion
	6.5 References

