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1.1 why temporal graphs?
Graphs are an essential mathematical tool to represent interacting systems.
When using static graphs, the interactions between two nodes is often rep-
resented as a single Boolean variable determining whether or not those two
nodes interacted with one another. Yet, we can think of many examples in
which this variable should depend on time. Think of a graph in which an
interaction between two people is a phone call. In most instants, for most
people, no interactions are recorded at all, and, in all cases at most one in-
teraction per time may occur. So, how would we determine the Boolean in-

A pictorial
representation of a
chain of calls

teraction variable? One approach would be to aggregate time as determine
that two people interacted if they had enough phone calls during a speci�c
time window. In this way, connections are created between people that fre-
quently call each other, but we loose an important piece of information: the
order of events. Imagine an event like the �re of Notre Dame de Paris: in
few moments people witnessing the �re spread the news to their contacts
who, themselves reported to others in chain. If we had no idea of what hap-
pened and what is the content of the calls or messages, we could actually
retrieve the geographical location from which the burst of information was
initiated by retracing backwards the chain of events. If instead we use a static
representation of the graph as we did earlier, all this information would be
lost. A temporal graph is then an object capable of representing the interac-
tions between the elements of a system together with a time stamp. Besides
communication graphs, other notable examples are face-to-face proximity
graphs, biological graphs, ecological graphs and many others.

As we will show in the remainder, in some cases it is necessary to keep
the temporal dimension into account if one wants to understand the process
happening on top of a graph. This is due to the fact that links may have
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2 temporal graphs

Figure 1.1: A pictorial representation of a temporal graph. (a) A graph with 4
nodes with V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 3), (2, 4)}. (b)
the temporal activation patterns of each edge (with color code). The x
axis represents time. Picture taken from Gauvin et al., Randomized refer-
ence models for temporal graphs.

a causal relation (like the phone calls in the Notre Dame example) or sim-
ply because the aggregated static graph may be non representative of the
interactions at any time stamp. We will then discuss how to mathematically
de�ne and represent temporal graphs, a relevant example of how to measure
them and show some peculiar properties of temporal graphs.

1.2 representing temporal graphs
Let us consider a set of nodes V and a set of edges E connecting the nodes.
Given a suited de�nition of interaction for our problem and a time window,
E is the set of all pairs of nodes (i, j) that interacted at least once in the
considered time window. We now want to add the notion of when these in-
teractions occurred. Each edge (i, j) can appear multiple times and for each
interaction we can consider a time t at which the interaction begun and a
time duration τ.1 We can then represent a temporal graph as a sequence of
temporal edges in the form (i, j, t, τ). Figure 1.1 gives a pictorial representa-
tion of the temporal edges of a graph with 6 nodes. We now provide a more
formal de�nition of a temporal graph.

1 We could equivalently replace τ with the time te at which the interaction ended.
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Temporal graphs

A temporal graph is a tuple G(V , Et), where V denotes the set of
n nodes and Et of temporal edges. Each e ∈ Et can be written as
(i, j, t, τ) where i, j ∈ V , t is a time-stamp and τ ∈ R+ is a positive
interaction duration, implying that the link between i and j was active
from t to t + τ. If a node has at least one connection at time t we say
it is active at time t and it is inactive otherwise.

Temporal graphs

One can generalize the concept of adjacency matrix to the temporal set-
ting by letting

Temporal adjacency
matrixÃ(t)

ij =

1 if ∃ e = (i, j, t0, τ) ∈ Et s.t. t ∈ [t0, t0 + τ]

0 else.

In this representation, however, time is kept as a continuous variable and,
even for a �nite observation time, we obtain an in�nite number of adjacency
matrices. For this reason, the snapshot representation – that uses a discrete
notion of time – may be more suited. In particular, we assume that the inter-
action duration τ is a multiple of a unit ∆t that sets the temporal resolution
of the graph. Let us de�ne the concept of snapshot graphs, pictorially visu-
alized in Figure 1.2.

Figure 1.2: A pictorial representation of a snapshot graph. This plot represents
the same graph of Figure 1.1 in which time was already discretized for
convenience. Each slice corresponds to a di�erent time step in which
the edges progressively are activated. Picture taken from Gauvin et al.,
Randomized reference models for temporal graphs.
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Snapshot graphs

A snapshot graph is a tuple G(V , Et), where V denotes the set of n
nodes and Et of temporal edges. Each e ∈ Et can be written as (i, j, t)
where i, j ∈ V , t is a discrete time-stamp and models an instantaneous
interaction between i, j at time t.

Snapshot graphs

With this representation at hand, one can obtain the adjacency matrix
representation of a temporal graph as follows

The snapshot
adjacency matrix

A(t)
ij =

1 if (i, j, t) ∈ Et

0 else.

In this way we obtain a sequence of T adjacency matrices {A(t)}t∈1,...,T ,
where T is the total number of snapshots. A natural question that poses is
how which of the two representations is more appropriate and how much
information is lost when choosing to discretize time. We address this point
in the following remark.

Discretizing time

The coupling
between the process
and graph dynamics

Discretizing time

If we want to choose a discrete representation of time, the natural
questions that arise are how to choose ∆t, the minimal interaction
duration and how much do we loose in performing this simpli�ca-
tion. The �rst point we want to raise is that any measured quantity
(including time) is not truly continuous and it is bounded by a resolu-
tion that makes time discrete by design. So, in all cases, one can say
∆t is the measurement instrument resolution and the snapshot rep-
resentation is always appropriate. Yet, if ∆t is much smaller than the
total observation time, the number of time frames T – even if �nite –
will tend to be very large, hence untractable. So, setting a longer ∆t
might be more appropriate in some cases and the choice of a good ∆t
is necessarily problem-dependent because ∆t determines the scale at
which we consider interactions to be simultaneous.

Let us make two examples to make this point clearer. Suppose we
have two spreading phenomena: in one case the propagation of a
piece of information (such as the �re of Notre Dame) and in the other
a �u-like illness transmission. In the former case, the propagation of
the information from one person to the other moves very fast and
so ∆t must be small, in the order of seconds/minutes to capture the
rapid dynamics of the news propagation. If we consider the �u-like
propagation, instead, we know that a person, after being infected, is
not typically able to infect someone for a couple of days, hence we
can set ∆t of the order of one day, assuming that one cannot change
its own infectious state in the course of a day. So, summarizing, the
proper time aggregation depends on the time-scale of the dynamic
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process happening on top of the graph. If this process if much slower
than the temporal evolution then we can simply aggregate the graph.
If instead the two time scales (of the process and of the graph evolu-
tion) are similar, then we have an interesting coupling that must be
taken into account.

To conclude this remark, there is still a quantity we want to preserve
when we aggregate time, that is the cumulative interaction duration:
what do we do with all interactions so that τ < ∆t? Also in this
case the answer depends on the problem under consideration. Take
for instance the �u propagation with a time aggregation of 24 hours.
If an infectious individual has a interaction with a susceptible one,
the interaction duration is key to determine the probability of infec-
tion: an hour-long interaction is much more likely to propagate the
disease than a minute-long interaction and all interactions will be
shorter than ∆t in this case. To preserve this piece of information,
we might want to associate a weight to each edge, representing the
cumulative interaction duration. We relate the continuous time and
snapshot adjacency matrices as follows

W(t)
ij =

∫ t+τ0

t
dt′ Ã(t′)

ij .

If this representation may seem very reasonable, it must be noted
that is not the only admissible one: in the case of the propagation of
sexual diseases, for instance, the interaction duration is not relevant
and may simply want to keep a Boolean representation of the edges,
without attributing any weight.

The weighted
aggregated graph

Now that we have introduced some of the main concepts related to tem-
poral graphs, let us consider the speci�c set of proximity graphs as a case
study, �rst describing a method to measure these graphs and then using the
open source, real data to describe some relevant properties.

1.3 measuring proximity graphs
In proximity graphs the edges represent a Face-to-face (F2F) contact between
two persons. The interest of this type of graphs resides in the fact that F2F
interactions are the vehicle of human communication and of infectious dis-
eases and, more generally, they quantify how humans interact with one an-
other. Measuring Face-to-face (F2F) proximity graphs is, however, a very chal-
lenging task. Among the most used approaches to quantify them we have
the use of questionnaires in which the interactions one has are self-reported.
It was shown that this method is biased towards long interactions – in the
sense that short interactions tend to be forgotten – and can achieve a low
temporal resolution. A very important contribution to the �eld of measur-
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Figure 1.3: Pictorial example of the use of SocioPatterns proximity sensors.
Six people in a room wearing a proximity sensor. The orange ones (with
the line), indicate a recorded F2F interactions between two individuals.
Picture taken from http://www.sociopatterns.org/.

ing F2F proximity graphs was made with the creation of the SocioPatterns
collaboration by the ISI Foundation.

The SocioPatterns
collaboration

A proximity sensor

SocioPatterns was formed in 2008 and developed wearable proximity sen-
sors that are capable to measure temporal proximity graphs. Their function-
ing is based on the transmission and exchange of information packets using
radio-frequency electromagnetic waves. Brie�y speaking, each device is as-
sociated with a code and continuously switches from a listener to a speaker
mode. When it is in the speaker mode it emits an information packet con-
taining its own code and the power at which the signal was emitted. When
it is in listener mode, instead, the device intercepts the packets emitted by
the “speakers” and records on its memory the code and the power declared,
the time stamp at which this interaction occurs as well as the power of the
received signal. The devices have to be worn on the chest of the participants
and, by design, record F2F proximity. Figure 1.3 shows a demo of the func-
tioning of the SocioPatterns proximity sensors.

Inside the memory of each sensor we then have a list of entries of the
type (j, powtr, powrec, t), where j is the code of the sensor that emitted the
signal, powtr is the transmission power, powrec is the received power and
t is the time-stamp that has a temporal resolution of 20 seconds. Looking
at the di�erence powtr − powrec one can measure the attenuation of the
signal and �lter out the interactions that are too attenuated, thus keeping
only those that happened at a distance within approximately 2 meters. From
this we can create a snapshot graph with ∆t = 20 s as described above.

The SocioPatterns sensors have been used in several contexts, including
schools, hospitals, o�ces and rural African villages among others. They con-
stitute a well known benchmark of temporal graph measurement that has

http://www.sociopatterns.org/
http://www.sociopatterns.org/
https://isi.it/en/home
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Figure 1.4: The School dataset. Pictorial representation of the School dataset (see
Table 1.1) aggregated over all the observation time. The size of each node
is the determined by the total interaction time of that node, while the
color is determined by the class the student belongs to.

been used in many applications and many of the collected datasets are pub-
licly available at http://www.sociopatterns.org/datasets/. We will make use
of some of these data to study some relevant properties of temporal graphs.
Table 1.1 summarizes some descriptive properties of the considered graphs,
while Figure 1.4 shows the aggregated graph collected in a high school.

Name n Observation time Description

School 180 from a Monday to the Tuesday
of the following week in
November 2012.

interactions between students
in a high school in Marseilles,
France belonging to 5 classes.

O�ce 92 June 24 to July 3, 2013 interactions between
individuals measured in an
o�ce building in France

Village 86 between 16th December 2019
and 10th January 2020

interactions between the
people of Mdoliro village in
Dowa district in the Central
Region of Malawi.

Conference 405 June 4-5, 2009 interactions at the SFHH
conference in Nice

Table 1.1: Summary statistics of the SocioPa�erns temporal networks. The
�rst column indicates the name used in these notes. The column indexed
by n indicates the number of nodes appearing in the graph. The column
Observation time describes the experiment duration, while Description
provides a few details on the context of the data collection. For more in-
formation, refer to the SocioPatterns website.

http://www.sociopatterns.org/datasets/
http://www.sociopatterns.org/
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Figure 1.5: Time respecting paths. Five snapshots of a temporal graph in which
unoccupied nodes are depicted in orange at each time, while the cur-
rently occupied node is in blue. A larger width is used to highlight the
edge that causes the transition.

1.4 properties of temporal graphs
We now proceed to describe some important concepts that characterize tem-
poral graphs and use the four aforementioned datasets to show them on
empirical data.

time-respecting paths

When we consider a graph G(V , E), we de�ne a path on it as an ordered
sequence of nodes {i1, i2, . . . , iT} for that, for all p ∈ [T], ip ∈ V and for
all p ∈ [T − 1], (ip, ip+1) ∈ E . In words, every step of a path allows one to
only move from a node to one of its neighbors. When we consider a temporal
graph, instead, we must generalize the concept of path, to encode the role
played by time, introducing the time-respecting paths.

Time respecting paths

Given a temporal graph G(V , Et), we denote a time respecting path
as {i1(t1), i2(t2), . . . , iT(tT)} if it satis�es the following conditions

• For all p ∈ [T], ip ∈ V : the path is de�ned on the graph nodes.

• For all p ∈ [T − 1], tp < tp+1: these two times indicate the
beginning of the residency on the respective nodes and time
must be increasing.

• For all p ∈ [T − 1], ∃ t0, τ s.t. (ip, ip+1, t0, τ) ∈ Et and tp+1 ∈
[t0, t0 + τ]: the transition between one node and the other can
only take place at a time at which the two nodes are connected.

Time respecting
paths

This de�nition is given for a continuous time representation but it can
simply be adapted to the discrete one. For this case, we give a simple repre-
sentation of a time respecting path in Figure 1.5.
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Figure 1.6: Time-respecting vs aggregate reachability. Each plot refers to one
of the 4 SocioPatterns datasets described in Table 1.1, considering the
�rst 8 hours of measurements. The red dashed line is the average of
the reachability matrix Rt de�ned in Equation (1.1) as function of time,
using for all t At the weighted aggregated matrix over all the observation
period. The blue continuous line, instead, is obtained from the snapshot
adjacency matrices and encodes time-respecting paths.

Given a sequence of adjacency matrices, we now de�ne the reachability
matrix Rt as follows

Reachability matrixRt = sign

[
t

∏
t′=1

(At′ + In)

]
, (1.1)

where In is the identity matrix, the sign function has to be considered
entry-wise, while the product has to be taken from right to left, i.e.∏3

t=1 At =

A3 A2 A1. The entry Rt,ij equals 1 if there exists a time-respecting path of
length smaller or equal to t that allows one to go from i to j.

Time-respecting
paths are not
symmetric

An important fact related to this matrix is that it is not necessarily sym-
metric. This comes from the fact that the product of matrices (such as the
At’s) is symmetric only if the matrices commute. This is not the case in gen-
eral and it implies that if there is a time-respecting path from i to j, that does
not imply that there exists also a time-respecting path from j to i.

By taking the average of the reachability matrix, we also have a measure
of how well its nodes are connected. Figure 1.6 compares the reachability on
the 4 real temporal graphs described above with the one obtained on their
aggregated version and clearly shows that temporal graphs have a lower
reachability. This is because the valid time-respecting paths are constrained
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Figure 1.7: Event and inter-event duration distributions. The �gures show the
scatter plot in log-log scale of the interaction duration (left) and inter-
event duration (right) distributions vs the 1− cd f , i.e. the complemen-
tary of the cumulative density function. Each line refers to one of the
datasets described in Table 1.1 and is color and marker coded.

and are only a subset of all the possible paths that one can perform on the
aggregate version of the graph. This is an important ingredient to consider
when coupling a dynamic process with the graph, because only a fraction of
all possible paths can actually take place.

duration distribution and burstiness

1− cdf(x) =
P(τ ≥ x)

We now focus on a very peculiar aspect of contact graphs, that is the con-
tact duration distribution. It has been observed in many instances (with no
apparent exception) that this distribution is very broad and follows approxi-
mately a power law decay that appears to be a universal behavior. Figure 1.7
(left plot) shows in log-log scale 1 minus the cumulative density function
vs the interaction duration and con�rms this trend, since the relation is ap-
proximately linear in the logarithmic scale. This is an important observation,
because it tells us that very long interactions are much more common than
what we would expect for a thin tail distribution, such as the Poisson. The
consequence is that, if we have a process that needs a minimal time of in-
teraction to consider the interaction to be valid, then, in practice, even if
the threshold is very large, there will be valid interaction edges with high
probability. On the other hand, we also know that most of the distribution
is concentrated around small values.

A similar behavior is observed for the inter-event duration distribution.
We de�ne the inter-event duration as the time elapsed between two succes-
sive interactions of the same pair of nodes (ij). Since this distribution is
broad, we say that the interaction dynamics is bursty, i.e. that typically we
have an alternation of time intervals in which the activity is very low and
some in which it is very high. To best understand the e�ect that a bursty
dynamics may have on a process, let us consider the following example.

Suppose we have a quantity Q that is increased by one unit every time
there is a interaction and it is decreased by a factor α for each time step in
which no interaction occurs. If Q exceeds a threshold value Qth, then some
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Figure 1.8: The e�ect of bursty dynamics. The �rst row represents a temporal
time series for (a) a Poisson process and (b) the interaction times of a
node of the Conference graph (see Table 1.1. Each horizontal line indi-
cates an active time. The second line displays the dynamics of a quantity
Q evolving according to the process described in the main text for (c)
the Poisson dynamics of (a), and for (d) the bursty dynamics of (b). The
horizontal dashed line indicates an arbitrary selected threshold value
that triggers some process when Q > Qth. Image adapted from Holme,
Saramaki, Temporal networks.

process is triggered otherwise it is not. In Figure 1.8 we compare this dynami-
cal process on a Poisson temporal series made of 362 interaction events with
one extracted from an individual activity pattern of the Conference graph.
The bottom plots clearly evidence that the bursty dynamics, being highly
concentrated in some time regions, allows one to go beyond the threshold
several times, while this does not happen to the Poisson distribution.

A method to measure the burstiness level of a time series is as follows

B =
s−m
s + m

,

where s and m are the standard deviation and mean of the inter-event
duration distribution, respectively. For a periodic process, s = 0 and B =

−1, while for the burstiest of processes, s → ∞ and B → 1. In our case,
the Poisson dynamics of Figure 1.8(a) has B = −0.45, while the one of
Figure 1.8(b) has B = 0.70.
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1.5 conclusion
Temporal networks are a powerful tool to model complex dynamical systems.
Empirical networks often show very broad distribution of the interaction du-
ration as well as bursty dynamics. These features are of great importance to
some dynamical processes that may unfold on networks and the temporal
framework is a relevant generalization of static graphs. However, the dy-
namic component of graph evolution must always be compared with the
typical time scale of the process unfolding over the graph in order to under-
stand whether it is necessary to have an additional layer of complexity given
by time or, more in general, to choose an appropriate time discretization to
perform the analysis.

1.6 references
• P. Holme, J. Saramäki, Temporal networks. Physics reports, 519(3), 97-

125 2012.
This is the reference for an introduction to temporal graphs.
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