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2.1 epidemics
Epidemiology is a branch of science that studies the determinants, distri-
bution and dynamics of a propagation process in a population. Given its
relation to a whole population, epidemiology is, by design complex and of
great interest when shaping public health policies. We will focus on infec-
tious disease epidemiology, i.e. on illnesses that can be transmitted from one
person to the other. Notable examples include the bubonic plague, smallpox,
the Spanish �u, HIV, in�uenza and, of course, Covid. Even though we will
mainly have in mind “illness” propagation, a similar if not identical math-
ematical framework can be adopted to anythings that propagates through
interactions, such as opinions, computer viruses or information.

Let us now describe in deeper detail some fundamental elements of epi-
demics and their modeling.

2.1.1 epidemic modeling
The basic medical observation that we want to model and capture is that
when a person is “sick” – for instance it is positive to in�uenza – and it
is in contact with a person who is not – and never was – then it can pass
the infection over to the healthy person. The meaning of “contact” depends
on the disease we are considering: think to the extreme di�erence there
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14 epidemics on networks

Figure 2.1: The deadliest pandemics in history.
Source: visualcapitalist.com/history-of-pandemics-deadliest

is between the HIV and the �u transmissions. Nonetheless, the dynamic
processes we have in mind are very similar. We introduce the Susceptible-
Infected-Recovered model (SIR), a cornerstone of epidemic modeling.

We de�ne three possible states every individual can be in: S, susceptible;
I, infected; R recovered. Susceptible people are healthy individuals that can
contract the disease. Infectious ones are those who currently carry the dis-
ease and can spread it out when they interact with a susceptible individual.
The recovered people, instead, are those who used to be infectious and now
can no longer be infected. There are two important parameters that take part
to this model: β that is the probability per unit time to infect a susceptible
person and µ, the probability per unit time to recover. We can summarize
the SIR model with the following equation

The SIR model

S + I
β−→ 2I

I
µ−→ R

The parameters β, µ are disease-dependent and tell us how easily the in-
fection runs across the population. Intuitively, if β� µ we are in a situation
in which people get infected at a much faster pace than they recover. As a
consequence, the epidemic will swiftly spread across the population. On the
opposite, if µ � β people simply recover very quickly and the epidemic
dies out. This concept, that we delineated in intuitive terms, is the so-called
epidemic threshold that determines the necessary and su�cient condition
for an epidemic spreading to occur and that we now more formally de�ne.

2.1.2 the epidemic threshold
We consider a population in which everybody is susceptible. This condition
is a stationary state, because no infection can occur among susceptible peo-
ple, or, in other words

S + S −→ 2S.

https://www.visualcapitalist.com/history-of-pandemics-deadliest/
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Figure 2.2: Epidemic threshold phase diagram. Below the critical value of R0
we are in an absorbing phase in which there is no epidemic, while for
R0 larger than the critical value, the probability that each node has of
being infected is non-null. Source: Satorras, Castellano, Van Mieghem,
Vespignani. Epidemic processes in complex networks.

We now perturb this state introducing few infectious individuals and ask
ourselves whether the system will fall back to an equilibrium having most
people being una�ected by the disease, or, if it will spread hitting a large
portion of the population. The simple approach to understand this problem
lies in the following question

The e�ect of R0,
some numbers
Source:visualcapitalist.com/history-
of-pandemics-
deadliest/

At the beginning of the spreading,
how many people do I infect before recovering?

If the answer is “more than one”, then we have a cascade in which the prop-
agation grows exponentially fast. If, on the opposite it is “less than one” than
it dies out because, in most cases, every individual recovers before infecting
someone else. We call this the reproductive number. As shown in Figure 2.2
it is the control parameter of a phase transition between a disease-free and
an epidemic state.

Let us stress two important facts. The �rst one is that R0 is de�ned at the
beginning of the epidemic. Notation-wise, this is why we call it R0, while Rt

is the reproductive number at a given time t. This is important to say because
the exponential spreading can occur only on a short time scale and then
saturate due to the �nite population size. The second fact is that the question
refers to a non-better speci�ed “I”, implying that the answer is the same
for everybody. Of course, if we think of our everyday life, the probability
of infection vary a lot across individuals, according to their sociability, the
interaction with children, the spaces they occupy etc. So, of course, we want
an average answer and we will study it in the next section.

https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/
https://www.visualcapitalist.com/history-of-pandemics-deadliest/
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2.2 epidemic modeling on networks
As we mentioned, the epidemic spreading propagates through contacts that
are well modeled by the edges of a graph. We now want to formally de�ne
the epidemic threshold transition for an arbitrary graph. This is of key im-
portance to understand if, given the structure of the network and the disease
parameters, the spread will touch a large fraction of individuals or not.

2.2.1 the state evolution eqation

We consider an agent-based model in which every individual i ∈ V is asso-
ciated to a discrete variable xi(t) ∈ {S, I, R} determining the state i is in.
When a susceptible person i is in contact with an infectious one j (Aij = 1)
for a time dt, then it gets infected with a probability βdt. An infected per-
son recovers with a probability µdt. We can write the probability of being
infected at the time-step t + dt as a function of t as follows:

The infected state
equation of the SIR on

a graph

P(xi(t + dt) = I) = E

[
δ[xi(t) = I](1− µ)︸ ︷︷ ︸

i was infected and did not recover

+ δ[xi(t) = S]

(
1−∏

j∈V

(
1− βdt · δ[xj(t) = I]

)Aij

)
︸ ︷︷ ︸

i was susceptible and got infected

]
. (2.1)

This equation features two terms: the case in which i was susceptible and
got infected and the can in which it was infected and did not recover. Note
that the probability of being infected is written as 1 minus the probability
of not being infected. We can simplify this equation in the limit for dt→ 0,
focusing on the term describing the probability of not being infected.

lim
dt→0

∏
j∈V

(
1− βdt · δ[xj(t) = I]

)Aij

(a)
= lim

dt→0
exp

{
∑
j∈V

Aijlog
(
1− βdt · δ[xj(t) = I]

)}
(b)
= lim

dt→0
exp

{
−βdt ∑

j∈V
Aijδ[xj(t) = I]

}
(c)
= lim

dt→0
1− βdt ∑

j∈V
Aijδ[xj(t) = I],
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where in (a) we used the identity x = elogx; in (b) we performed the
expansion log(1 + x) = x + o(x) and in (c) the expansion ex = 1 + x +

o(x). Substituting this expression in Equation (2.1) we obtain

P(xi(t + dt) = I) = E [δ(xi(t) = I)] (1− µ) + βdt ∑
j∈V

AijE
[
δ[xi(t) = S]δ[xj(t) = I]

]
= P (xi(t) = I) (1− µ) + βdt ∑

j∈V
AijP

(
xi(t) = S, xj(t) = I

)
.

Taking the �rst term on the right hand-side to the left and dividing by dt,
we obtain the derivative of the probability that reads

∂tP(xi(t) = I) = β ∑
j∈V

AijP
(

xi(t) = S, xj(t) = I
)
− µP(xi(t) = I).

(2.2)

Following the same passages, we get the evolution equations for all three
states. Note that, ∂tP(xi(t) = S) + ∂tP(xi(t) = I) + ∂tP(xi(t) = R) = 0,
because the probability of being in one of the three states sums up to one.

SIR model on a graph

∂tP(xi(t) = S) = −β ∑
j∈V

AijP
(
xi(t) = S, xj(t) = I

)
∂tP(xi(t) = I) = β ∑

j∈V
AijP

(
xi(t) = S, xj(t) = I

)
− µP(xi(t) = I)

∂tP(xi(t) = R) = µP(xi(t) = I). (2.3)

In order to obtain the reproductive number we must study the stability of
this system of equations that, however, is still non-linear and hard to study
because it involves the marginal distributions P

(
xi(t) = S, xj(t) = I

)
for

which we do not have an explicit expression. To cope with this problem, we
adopt the simple naïve mean �eld approximation.

2.2.2 naïve mean field

The naïve mean �eld (NMF) approximation consists in considering all vari-
ables as independent i.e. in factorizing the marginals as follows

The NMF

approximation
P(xi(t) = S, xj(t) = I) = P(xi(t) = S)P(xj(t) = I).

This approximation greatly simpli�es the problem. In fact, in (2.3) we have
de�ned the evolution of 3n equations concerning the node marginal prob-
abilities, but there are 2|E | equations (where E is the set of edges) that are
unspeci�ed. Factorizing the probabilities with naïve mean �eld, we simply
get rid of these terms. Let us �rst make some comments about this approxi-
mation, its limits and when we expect to be a good method to proceed.
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Some notes on the naïve mean �eld approximation

Given its simplicity NMF is a commonly adopted strategy to �rst
tackle a problem, but is it accurate? In other words, we are asking
to what extent we can assume that the event that i is susceptible is
independent from the event that its neighbor j is infected. Given the
context of the model, the answer seems necessarily to be negative
since the contagion is transmitted through the contacts.

The most relevant setting in which NMF should be considered is that
of dense networks, i.e. those in which every node has a large degree.
Suppose we have a fully connected network: the fact that the edge
Aij exists is simply irrelevant because all edges exist. One can show
that indeed, in this setting the NMF approximation becomes asymp-
totically exact and, in general, the denser the network is the more
the NMF approximation is accurate. An example of how to go beyond
this approximation is discussed in chapter 3.

With NMF approximation at hand, Equation (2.2) turns into

∂tP(xi(t) = I) = βP(xi(t) = S) ∑
j∈V

AijP(xj(t) = I)− µP(xi(t) = I).

We now linearize this equation around the stationary state P(xi(t) =

S) = 1 to get the reproductive number.

2.2.3 the reproductive number with naïve
mean field

As we explained before, we want to see the e�ect of perturbing the station-
ary state in which everybody is susceptible by adding a small probability of
being infected. For simplicity, we denote P(xi(t) = I) := pi(t) and move
to a vector form of the equations. We let Pi(xi(t) = S) = 1 and obtain

The linearization
around the

diseases-free point
under the NMF

approximation

∂t p(t) = (βA− µIn)p(t).

If we want that ∂t pi(t) < 0 for all i and all t, we must impose that βρ(A)−
µ < 0, where ρ(A) denotes the spectral radius of A. If this condition is sat-
is�ed, then we end up in the disease-free region. If on the opposite βρ(A)−
µ > 0, the probability of being infected grows at each time step and the
virus has a broad di�usion on the network. We thus obtain the following
value for the reproductive number

Reproductive number with the NMF approximation

R0 =
βρ(A)

µ
(2.4)
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Figure 2.3: Epidemic threshold: theoretical prediction versus simulated data.
We run a SIR model for di�erent β values on a dense graph (left panel)
and on a sparse one (right panel) generated from the random con�g-
uration model. We plot the burden (i.e. the fraction of non-susceptible
individuals) as a function of R0 as predicted by the NMF approximation.

In Figure 2.3 we compare this prediction with an empirical simulation on a
dense (left panel) and on a sparse one (right panel), evidencing the goodness
of the approximation only in the former case. Now, as a last step, we give
some simple results relating the spectral radius of A with its structure.

2.2.4 graph structure and reproductive
number

Studying the spectral properties of the adjacency matrix for di�erent gen-
erative models is a problem of great interest, that however goes beyond the
scope of this course. Here we provide two simple examples with intuitive and
non-rigorous arguments to characterize the value of ρ(A) and understand
the role of density and degree heterogeneity in determining the threshold.

Erdős Renyi random graph

x1

d

The leading
eigenvalue of A, x1
against the degree
vector on a random
dense graph

The spectral behavior of the Erdős-Rényi (ER) random graph changes dramat-
ically according to whether its expected average degree grows with its size
or not. Letting p be the probability of being connected, then we can de�ne
two di�erent regimes: the dense one in which log(n)/pn = on(1) and the
sparse one in which the opposite is true, i.e. pn/log(n) = on(1). In words,
if the average degree grows faster than log(n) we say the network to be
dense. This is a game-changer because, under this hypothesis, the degree
distribution is concentrated, i.e. , for all large n, with probability one

max |di − np| = on(np).
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Figure 2.4: Hitting time as a function of the expected degree. We consider a
random graph generated from the con�guration model and denote with
θi the expected degree of node i. In the plot we show the scatter plot of
θi against the hitting time h, de�ned as the number of iterations after
which the node got infected in a SIR simulation.

Again, in words, this means that a dense ER graph is quasi regular. In this
case, we can heuristically1 write the following equation

(A1n)i = ∑
j∈V

Aij = di ≈ np ≈ 〈d〉(1n)i.

This implies that 1n is a close approximation of the leading eigenvector2

ρ(A) = 〈d〉+ on(d)
on dense ER graphs

and the average degree is an approximation of ρ(A). From this result, we
obtain that in denser networks an epidemic spreading runs faster, as one
could reasonably expect.

Let us now consider the case in which the graph is generated from a con-
�guration model with an arbitrary degree distribution.

Con�guration model

Once again we operate under the assumption of being in a su�ciently dense
regime and derive a heuristic expression of the leading eigenvector of A,
which we suppose in this case to be d, the degree vector.

ρ(A) =
〈d2〉
〈d〉 + on(d)

for dense random
graphs with an
arbitrary degree

distribution

(Ad)i = ∑
j∈V

Aijdj ≈ ∑
j∈V

did2
j

2|E | = di
〈d2〉
〈d〉 .

We thus get that ρ(A) = 〈d2〉/〈d〉 implying that a broad degree distribution
makes the spreading run even faster on the network. This is because of the

1 For simplicity we derive this result heuristically, but it can be formally proved.
2 Due to Perron-Frobenius theorem.



2.2 epidemic modeling on networks 21

role played by hubs, i.e. nodes with a high degree. Since they have a lot of
connections, they are very likely to get infected in the earlier stages of the
epidemic and then become super-spreaders. Notably, the value of ρ(A) that
we just may diverge for scale-free networks in which the second moment
of the degree distribution goes to in�nity, making the transition go to zero.
Figure 2.4 shows for each node the infection hitting time (i.e. the time it takes
to get infected) as a function of their degree. The plot evidences a strong
negative correlation, con�rming the intuition that nodes with a large degree
are the �rst to get infected and then they are responsible of the spreading.
Note that in practice the second moment of the degree may only diverge in
the asymptotic theoretical limit. All real world networks are �nite and so
is 〈d2〉. Nonetheless, in real-world settings, it can be overwhelmingly large
and drive the epidemic to unfold very fast on the network.

2.2.5 from theory to practice: epidemic
mitigation

Let us now discuss some basic facts about epidemic mitigation based on our
results. Suppose we have a vaccine and we add a fourth compartment to our
model, that of vaccinated people that behaves exactly like the recovered one.
From our analytical view-point, we can still deploy the results we obtained,
because vaccinated people simply do not take part to the process, since they
cannot change their compartment. For this reason it is as if they were not
part of the network.

We ask ourselves how vaccination impacts the epidemic spread. To an-
swer this question we add a Boolean variable si the equals 0 if i is vacci-
nated and cannot transmit the disease and is 1 otherwise. The matrix that
determines the epidemic threshold is then now

W = A ◦ (ssT).

Using a non-rigorous argument, we will see how the vaccination deter-
mines the epidemic threshold.

Methodological remark

The approach we used to study ρ(A) was non rigorous but leads to
the correct result because we assume A to be dense. By vaccinating a
large portion of the population, instead W becomes sparse by design
and not only the method we adopt but also the result is incorrect.
Formally, we can only see what is the e�ect of vaccination on the
spreading, assuming that a small fraction of the population has been
vaccinated and W is still dense. This heuristic result, however, gives
us some important intuition that we can verify numerically and that
can be rigorously proved with other more rigorous methods.
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Let d̃i = disi. Then

(
Wd̃

)
i = ∑

j∈V
Aijsisjd̃j ≈= ∑

j∈V

d̃id2
j sj

2|E | = d̃i
sTd2

1T
n d

,

so sTd2

1T
n d is a close approximation of ρ(W). Now, if si is Bernoulli random

variable with probability p, we get

ρ(W) ≈ p
〈d2〉
〈d〉 .

So, the vaccination decreases the R0 and allows one to stay below the
epidemic threshold. From a simple observation, however, one sees that this
is not the optimal strategy. In fact, in we �x sT1n, i.e. the number of vaccines,
and attempt to minimize sTd2 one immediately sees that the solution lies
in vaccinating the nodes with the highest degree, i.e. the hubs. This target
immunization signi�cantly helps in improving the mitigation e�ectiveness.

2.3 extensions
In the previous sections we only considered the SIR to model an epidemic
spreading. While this is one the most relevant models in epidemiology, it
must be mentioned that several alternatives exist. The simplest one is the SI
in which individuals cannot recover and is equivalent to the SIR for µ = 0.
In this case one can see that no epidemic threshold exists and, for how lit-
tle is the transmission parameter, the epidemic will certainly involve all the
population sooner or later. Di�erent is the case of the SIS model in which
an infected individual recovers but is once again susceptible. This model
accounts for the fact that having experienced an infection does not imply
one is immune, in some cases. From a mathematical perspective this slightly
changes things: as we commented already, in the SIR, an infected individ-
ual cannot have been infected by a susceptible neighbor. On the opposite
in the SIS this can happen: a infected individual can have been infected by
someone who now is susceptible but that recovered. Actually, the di�erence
between these two regimes cannot be understood from the NMF approxima-
tion because it is indeed not able to capture this dynamic. If one adopts a
more re�ned approximation strategy, however, it is indeed possible to see
that in the two cases the epidemic threshold varies.

Other models realistically add more compartments to the equations. Some
of the most common are the exposed, vaccinated and dead compartments.
Exposed people are those who already contracted the virus but that are still
not contagious. After some time, they turn infected. The addition of these
or other compartments may take into account of more complex medical and
behavioral factors. On top of this, the model parameters may add further
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depth. We assumed β, µ to be constant and equal for all individuals, while
one may assume that they depend, for instance, on age or mask-wearing.

It is worth mentioning that we only talked about simple contagion, i.e. the
process in which one infected individual passes the disease over to a suscep-
tible one. Thinking however of epidemiology in a broader sense, this is not
the only possible alternative. Contagion may occur, for instance, only if one
is exposed several times to an infected individual, each one passing a “piece”.
Only when all “pieces” are passed one becomes infected. Alternatively one
can imagine contagion as a process in which it is necessary to have several
infectious people interacting at once for the disease to be transmitted. We
talk in these cases of complex contagion.
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