CAVITY METHOD

3.1 Sparse and tree-like graphs . . . . . .. ... Lo 25

3.1.1  Locally tree-like graphs . . . . ... ... ... ... 25

3.1.2  Conditional independence . . . . . ... ... .... 26
3.2 Factorizing probability distributions on trees . . . . . . . .. 27

3.2.1  Cavity method on tree-like graphs . . . .. ... .. 30
3.3 The non-backtracking matrix . . . . . . ... ... ... ... 31
3.4 An application to epidemics . . .. ... ... ... ... 32
3.5 Efficiently computing the spectral radiusof B . . . ... .. 34
3.6 Conclusion . . . ... ... ... ... ... ... . ... 35
3.7 References . . .. ... ... .. ... ... ... .. .. ... 35

3.1 SPARSE AND TREE-LIKE GRAPHS

In the previous lecture we introduced the naive mean field (NMF) approxima-
tion to study the epidemic threshold on a graph. We saw, however, that this
approximation is appropriate only for dense graphs, while most of real world
graphs are (luckily) sparse. We here investigate an alternative approach that
is well suited for sparse random graphs and that builds an approximation
based on the locally tree-like' structure of a sparse Erdds-Rényi (ER) graph.

3.1.1 LOCALLY TREE-LIKE GRAPHS

Let us first introduce the concept of rooted graph G;(V, £) that is a graph in
which a particular node i € V (the root) is specified. Denote with 3;(t) the
ball of radius ¢t around the node i, i.e. the sub-graph made by the set of all
nodes that can be reached from i in at most ¢ steps and the corresponding
edges. If the law of 3;(#) under uniformly random sampling of the root
admits a limit £, then we call it local weak limit. In words, L is the asymptotic
local distribution of G(V, £) as seen from a random vertex. A relevant result
concerning sparse ER graphs? is that they locally converge to a tree, as more
formally stated in Property 3.1.

1 We recall that an undirected graph G(V, £)is said to be a tree if it is connected and it does
not contain any cycle.
2 But actually also other sparse random graphs.
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Figure 3.1: A toy example of a Poisson GW tree. In red the root 7, in blue the first
generation of nodes, in green the second.

Property 3.1 (Convergence to Poisson Galton Watson tree (GW) tree of ER).
A sparse ER random graph with n — oo rooted at i with average degree d =
O, (1) converges locally to a Poisson GW tree so obtained: consider the node i as
the root and generate d; neighbours (called sons), where d; is a Poisson random
variable with parameter d and iteratively repeat the operation for each son.

As a consequence of this property, a sparse ER graph locally looks like
a tree and hence, with high probability, there are no cycles of finite size.3
Figure 3.1 displays an example of a Poisson GW tree, rooted at i.

Let us now describe a fundamental property of probability distributions
defined over the nodes of a tree, namely, conditional independence.

3.1.2 CONDITIONAL INDEPENDENCE

Consider three random variables x, v, z. We say that x and y are condition-
ally independent given z if

Plx,y | z] = Plx | 2]Py | z]. (3-1)

Note that two random variables are independent if we can write IP[xy] =
IP[x]P[y], that is what we did in the NMF approximation. Conditional inde-
pendence holds only on the conditional probabilities and in general E[xy]| #
E[x]E[y]. Now, the relation between conditional independence and trees is
that all variables associated to the neighbors of a same node are conditionally
independent given the value of their common neighbor, or, more formally

V] 7é k € di, ]P[x]-,xk | xi] = IP[x] | xi]]P[xk | xi].

Let us try to understand why. Suppose there is a piece of news that is propa-
gating on the network through contacts. If a node knows it, then with some

Recall the local convergence definition is given in the asymptotic limit of # — oco. Finite
cycles will exist, but their size will depend on 7 (for instance they may grow as log(n)) and
thus diverge in the large n limit.



3.2 FACTORIZING PROBABILITY DISTRIBUTIONS ON TREES

probability it will talk about it to its neighbors that will also be aware of it
from that moment on. Now, let us consider a node i (as the red one in Fig-
ure 3.1) and two of its neighbors j, k (in blue, same figure). If we let x; = 1
if i knows the piece of information and x; = 0 otherwise, then, clearly
P[x;j, xx] # P[x;]IP[x;]. If the variables were independent, the notion of
x; would not allow me to say anything about xj, but it turns out that if I
know x; I can tell something about x;. The two random variables bring in-
formation one of the other because there is a (short) path connecting them
and the piece of information may flow from one node to the other. However,
since we are considering a tree, there is only one such path, that is the one
going through i. If we suppose to know x;, then knowing also x; does not
add any information when trying to predict xj, because the only influence j
has on k is through i. This is the effect of conditional independence.

Notably, conditional independence implies the following relation that we
will exploit later on.

P (xi, xj, xx) = P(xj, xi|x;) P ()
= P (x| x; )P (g | ;) P (x;)
P (x;, ;)P (x;, xx)
TP (52

Knowing that a sparse ER random graph asymptotically “looks like” a tree,
we can now simplify our analysis exploiting conditional independence and
the graph structure to introduce the cavity method, or belief propagation.

3.2 FACTORIZING PROBABILITY DIS-
TRIBUTIONS ON TREES

As we saw in Chapter 2, a difficulty of studying processes on a graph is
to compute the edge marginal probability distributions that cannot be sim-
ply assumed to factorize as the product of the node marginals. The cavity
method builds on the fact that the edge marginals can be exactly calculated
on tree with a recursive formula, as stated in Lemma 3.1.

Lemma 3.1. Let G(V, ) be a tree and let ji(x) be a probability distri-
bution defined on G(V, € ) that can be written as

u(x) = T oij(xi xj). (3.3)

(if)e€

Then the edge marginal p;j(x;, x;) = Zx\xi,xjy(x) and the node
marginal p;(X;) = Y\, #(x) can be written in the following form:

wi(xi) = [T mie(xi) (3.4)

keai
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Figure 3.2: Sketch of a tree. The node i in red, while in green, blue and orange the
edges and nodes &;, V;, with x = j, k, I, respectively. Note that i belongs
to Vi, Vz] and V.

pij(xixj) = @ij(xi, %)) [T ma(xi) TT min(xp)- (3:5)

kedi\j Ledj\i

The quantities 17;;(x;) are defined on the set of directed edges.

From Equations (3.4, 3.5), exploiting p;(x;) = ij pij(xi, x;), itis obtained
that the messages have to satisfy the following fixed point equation

mij(xi) = Y ¢ij(xi, ) TT m(x;p). (3.6)

Xj Leaj\i

Let us now sketch here the proof of Lemma 3.1 since it is very pedagogical
and helpful to understand the essence of cavity method.

Proof of Lemma 3.1. Denote with &£; the set of directed edges of
G(V, E)and consider (ij) € Eq. We define &;; as the set of all edges
that can be reached from i only passing through j. As a consequence
of the fact that on a tree there exists a unique path connecting any
two nodes — since there are no cycles —, the two following properties
are verified:

Vie), SZU&‘]{; (3.7)
keoi
Ve, E={GHuv U & U U& . 69
kedi\j tedj\i
N’ N’

reached from (ji) reached from (if)

Furthermore, note that V j # k, &;; N &y = @. A pictorial representa-
tion of the definition of £;; is given in Figure 3.2. Exploiting Equation
(3.7), p(x) can then be written as:

V(x) = H Pav (xa, xb) = H H Pav(Xa, xb) = H l/)ik(xvik)/

(ab)e& kedi (ab) €&y keai
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where Vj; is the set of nodes connected by edges in £ (i included)
and xy, is the variable vector corresponding to those nodes. The node
marginal can then be written in the following form

pilxi) = Y p(x) =Y [Tvalxv) =11 X wa(xy,)

x\xi x\xi keai keai xvik\xi

Denoting 77 (x;) 1= Ly \x; ik (xy, ), we obtain the first equation of
Lemma 3.1. Note that 77, (x;) indeed only depends on x; since the sum
is run over all variables xy, , except x;. Proceeding in a similar way,
the expression of the edge marginal is obtained from Equation (3.8).

pij(xi, xj) = Z p(x)

x\xix]-
=Y ¢ij(xixy) [T TI ¢aw(xaxs) TT 1 ¢ea(xe xa)
x\x;x; keoi\j (ab)e&y Le0j\i (cd) €&y
= Y. ¢ij(xix) [T vlxn,) T1 Wie(xy,)
x\x;x; keai\j Leaj\i
:(Pij(xi/xj> H Z Wik (xv,) | - H Zl,b]'g(xvj@)
keai\j xy, \i Leaj\i *Vi\i
= ¢ii(xi, %) [T (i) TT mje(xy).
keai\j Leoj\i

O

The essence of the proof of Lemma 3.1 relies on the conditional inde-
pendence of the node variables on trees. More specifically, to obtain Equa-
tion (3.7), one could imagine to remove the node i, obtaining d; (the degree
of i) disconnected sub-graphs in which variables are independent and hence
factorize. Similarly Equation (3.8) is obtained removing the nodes 7 and j
from the graph. We now show that on a tree, Equation (3.2) is verified.

Lemma 3.2. Let G(V, E)be a tree and let y(x) be a probability dis-
tribution defined on G(V, £)that can be written as per Equation (3.3).
Then, taking j, k € 0i with j # k we can write

]P(Xl', Xj)lP(Xl', Xk>
IP(x;)

]P(xi,xj,xk) =

Proof. For simplicity, we will drop the dependence on the variables x.
Following the same procedure we used to prove Lemma 3.1, we can
easily show that

1P<xi/xjrxk) = ¢ijPik H Mjp H Mkq H Hir-

peoj\i qeok\i redi\{jk}
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This can be rewritten in the following form

(e5 TT mp T o) (9 TT g TT 7o)

peadj\i redi\j €ok\i redi\k
P(x;i, xj, x¢) = ] ] !
ik H ir
kedi\k
Py, )Py (i, xx)
IP; (x;) '

where in the last step we used the relations shown in Lemma 3.1. [

Given these results on trees, let us now move to sparse graphs.

3.2.1 CAVITY METHOD ON TREE-LIKE GRAPHS

When we consider a graph that is not a tree, the proof we gave above does
not generalize because &;; U & # @, due to the presence of cycles. In a tree-
like graph, however, we know that cycles do not have a short length. When
considering two nodes j, k in the neighborhood of a same node, there will
be a short path of length 2 connecting them and other very long paths that
pass through other nodes. The main intuition we have is that all those long
paths are unimportant and the main channel of of relation is the short path
connecting them. For this reason, we simply use conditional independence
as an ansatz that is asymptotically verified on sparse graphs. We can then
rewrite the cavity equations on a graph (with cycles) a follows.

The cavity fixed point equations

nji(xi) = 24’11 Xi, X;j) H Mje(x;)-

z Xj leaj\i
Factorizing
probabilities on i(xi) = = H ik (x:)
sparse graphs Z kGal
pij(xi, xj) ~ 4’11 xi, %) [T me(xi) T1 je(%)-
kedi\j teoj\i

Given these equations, we now introduce the non-backtracking matrix or
Hashimoto operator that naturally comes into play from the cavity method.
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3.3 THE NON-BACKTRACKING MATRIX

Let us consider the fixed point cavity equation, letting 7;;(x;) = log(1;;(x:))
and C]l = IOg(Zl) - log(Zﬂ)

rii(x;) = Cji +log | Y_exp < log ¢ij(xi, xj) + Y rje(x;).
xj Leoj\i
Focusing on the sum ) c5;;, we introduce the non-backtracking matrix.

The non-backtracking matrix

Let &4 be the set of directed edges of a graph G. We define the non-
backtracking matrix B € [0, 1]1%alx[€al a5

Bij) ey = Ox(1 = Jie), (3.9)
for all (if), (kf) € E4. Then, given a vector g € RI€al, we have

(Bg)(ij) = Z 8je-
Leaj\i

. J

In simple words, we can say that the non-backtracking matrix B is the
linear operator associated to the cavity approximation. To interpret its def-
inition, in essence we can see B as the adjacency matrix of graph in which
each node is a directed edge of G(V,€) and two nodes are neighboring if
they are successive and the second one is not the reversed of the first. Unlike
the adjacency matrix, the spectral radius of the non-backtracking matrix is
“well behaved” in the sparse regime, as stated by the following theorem.

Theorem 3.1. Consider a symmetric matrix A € [0,1]"*" in which
the entries are set to 1 independently (up to symmetry) with probability
IP(Ajj = 1) = Pjj and Pj = O, (n~") for alli,j. Then, for all large n
with high probability, the spectral radius of the non-backtracking ma-
trix B associated with the adjacency matrix A is

p(B) = p(P) + 0n(1).

This theorem is very general and allows us to consider easily both the ER
and the configuration model. For the ER, we have P = %lnlz and p(P) =
(d), the expected average degree. For the configuration model, instead, we

can write P = ﬁddT and thus p(B) = %

Let us now see how the matrix B enters into play when studying the epi-
demic threshold on a sparse graph with the cavity method.

31
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3.4 AN APPLICATION TO EPIDEMICS

Let us now use the cavity method to find the epidemic threshold on a sparse
graph, in which the NMF is not appropriate. Let us consider Equation (2.2)
that describes the dynamics of the infected state in a Susceptible-Infected-
Recovered model (SIR) model. We can write

at]P(xi(t) = I) = ﬁ ZVAZJIP (Xl'(t) = S,x]'(t) = I) — }l]P(Xl'(t) = 1)
j€

The whole point of going beyond NMF is to realize that x;(t), x;(t) are not
independent if A;; = 1. To move forward, let us lighten a bit the notation.
We define p € R” the vector with entries p;(t) = P(x;(t) = I) and with
x(t) € R¢! the vector with entries Xij(t) = P(x;(t) = S,xi(t) = I).
Note that the vector x is defined over the set of directed edges of the graph
and that x;;(t) # xji(t), in general. With this notation, we can rewrite the
state evolution as

op(t) = BTx(t) — up(t), (3.10)

where we introduced the matrix T € R"*2I€l, defined as Ti (av) = SiaAap-
Now, to proceed, we need to write a state evolution equation for the vector
x(t) as well. The probability that i and j are respectively susceptible and
infected at a given time step implies that they were both susceptible and j
got infected (but certainly not from ), while 7 did not or that j was already
infected, it did not recover and i did not get infected.

xij(t +dt) =

E [8[xi(t) = SJo[x;(t) = S| [1—pat Y ofxe(t) =1 | Bt [ Y 6[xe(t) = 1]

keai\j Leaj\i

+E |8[xi(t) = SJo[x;(t) = 1] | 1— Bdt Y () = 1] — Bdt | (1 — pdt)
o

N

keoi\j

i does not get infected

Now, there are two approximations we can perform to simplify the analysis.
The first one is just to take the limit for ¢ — 0 and remove the higher order
terms. The second one is done exploiting conditional independence. We first
remove the higher order terms in dt

it +dt) “=° pat 2\ E [6[xi(t) = So[x;(t) = SJo[x.(¢) = 1]
(eaj\i

i does not get infected j gets infected

j recovers
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+ xij (1) (1 — pdt — pdt) — pdt ) | E[8[x;(t) = S]o[x;(t) = Io[xe(t) = I]] -
kedi\j

We now exploit conditional independence. We denote with ();; = P(x;(t) =
S, xj(t) = S) ands; = P(x;(t) = S) and write

E [6[xi(t) = S|6[xj(t) = S)é[x,(t) = 1]] = Qy(t) - xje(t)

E [6[x;(t) = S]o[xi(t) = I]6[xx(t) = ] = =—=——"—~=,
thus turning the state evolution equation into

O (t
xij(t+dt) 20 gt f’( )

Y ) 4 (01— Bt — dt) — par’ i) ),

si(t) reoj\i si(t) keoi\j

To get the epidemic threshold we now want to linearize around the epidemic-
free fixed point that is ();;,s;,5; — 1 and x;; — 0 and get
dt—0
Xij(t+dt) =" Bt Y xje(t) + xii(1) (1 — Bt — pdt),
teaj\i

that can be written as
dix(t) = (BB — (B + 1) Dye ) x(b)-
Injecting this result in Equation (3.10)
(atp<t>> _ ( —pn /3T> (p(t)) |
dex () BB—(B+mhig 0/ \x(t)
From a simple calculation one sees that the stability condition is now ob-
tained on heterogeneous random graphs as

The reproductive number according to the cavity method

i W

BB -1) _ B ((®)
S0= <<d> ‘1>'

If we compare this result with the one obtained from NMF, the main dif-
ference is the appearance of the term “—1” that accounts the fact that when
there is a susceptible-infected pair (if), certainly i did not infect j. This comes
“for free”, in the sense that we did not have to add this correction manually
and it naturally came from the equations. Other than that the results seem
quite similar, but we must not forget that p(A) is very close to p(B) on
dense networks but not on sparse ones. In other words, @ still is the good
quantity to look at, but it is actually not the spectral radius of A in the sparse
regime. Using the method explained in Chapter 2, we can derive the Ry of

the SIR model in the presences of vaccination. Note that, while with NMF this
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Figure 3.3: Epidemic burden as a function of B/ for different vaccination
strategies. The yellow dots are the burden (fraction of non-susceptible
people at the end of the simulation) in absence of vaccination; the blue
diamonds correspond to the random vaccination; the purple squares are
the targeted vaccination in which each person is vaccinated with a prob-
ability proportional to the degree. The vertical lines (color coded) corre-
spond to the position of the transition as predicted by the cavity method
for the three different scenarios.

result was not rigorous because the effect of vaccination is to sparsify the
network, with the cavity method we obtain e precise bound. The simulation
shows the goodness of the cavity method in this setting as well as the effi-
cacy of targeted vaccination strategies, as shown in Figure 3.3, we introduce

Qi (ab) = SivAgp and M(p) (ca) = AabAcadbclad-

3.5 EFFICIENTLY COMPUTING THE SPEC-
TRAL RADIUS OF B

We have seen that the non-backtracking matrix naturally appears when
adopting the cavity approximation. The B matrix defined in Equation (3.9)
however is large (its size scales with the number of edges, not of nodes) and
it might not be so straightforward to build. However, we now show that
there is a matrix By, of size 21 X 2n whose eigenvalues are also eigenvalues
of B and it is much more easily built. Similarly to the matrix T introduced
earlier T; () = JigAgp, We introduce Q € R"*2I€l and M € R2I€1<2I€]

Qi (ab) = ibAab
M(ab),(cd) = OpcOad AapAcd-

Now, the following relations? are satisfied:

4 You may try to obtain these relations as an exercise.
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Q'T-M=B
TQT = A
QQ'=D
QM =T
TM = Q

With these relations at hand, suppose g is the leading eigenvector of B
with eigenvalue p, then

pTg = TBg=T(Q'T — M)g = ATg — Qg,

and

pQg = QBg = Q(Q'T~ M)g = DTg — Tg.
Denoting Pg = x and Qg = y for simplicity, we obtain,

A —1I, X X
L )00 e
D-1, 0 y y

By

where we introduced the smaller matrix B, € R?"*2" This matrix has the
same eigenvalues as B (except those equal to -1 that have a different degen-
eracy). This matrix can thus be used to efficiently compute p(B).

3.6 CONCLUSION

In this section we introduced the cavity method and the closely related non-
backtracking matrix. Unlike the NMF approximation, this method is well

suited for sparse graphs, being asymptotically exact on sparse random graphs,
such as the ER. Consequently, this “second order” approximation (in which

we assume independence at the edge, rather than the node level) is more ac-
curate, but we must recall that real-world networks are often sparse but not

locally tree-like. Sparse random graphs, in fact, tend to have a much smaller

clustering coefficient than a real network with the same average degree. The

low clustering coefficient, however, implies the absence of short loops, mak-
ing the cavity method exact on random, but not on real world graphs, in

general. This approximation is a improvement over NMF approach that is

appropriate to deal with some of its limitations.
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This review is a milestone for physics methods on graphs and in Chap-
ter 4 it treats the cavity method.

« Mezard, Montanari: Information, Physics and Computation.

This is another relevant reference. The cavity method is discussed in
Chapter 14.
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