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4.1 the fourier transform
The Fourier transform is a fundamental tool in mathematical analysis that
was introduced by Joseph Fourier in to solve the heat equation that in the
one dimensional case reads

The heat equation∂tu(x, t) = α ∂2
xu(x, t), (4.1)

where α is the thermal di�usivity. The Fourier transform was introduced
with the scope of solving this di�erential equation and it consists of moving
to the “space of frequencies” that, in some cases, like this one, can be very
convenient. This powerful tool of signal processing, in fact, allows one to
de�ne simple operations such as �ltering and convolutions in the frequency
domain that would otherwise be very hard to perform in the original one.
Given its power, we want to extend its de�nition to non-Euclidean domains
and in particular to functions that are de�ned on the vertices of a graph.

As a �rst step, we here re-derive the de�nition of Fourier transform, start-
ing from Equation 4.1 to then attempt to generalize it to the graph domain.
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38 graph fourier transform

4.1.1 deriving the fourier transform
In Equation 4.1, the second derivative can be seen as an operator that acts
on the function u(x, t). The simplest way to derive the Fourier transform is
to see it as a decomposition of u(x, t) on the eigenfunctions of that operator.
We start from these two basic properties

The eigenfunctions of
the second derivative

∂2
x eikx = −k2eikx, (4.2)

1
2π

∫
R

dk eikx = δ(x). (4.3)

These two equations imply that eikx are the eigenfunctions of the second
derivative and they form an orthogonal basis. For a given function f (x) we
can thus write

The Fourier
transform

f (x) =
∫

R
dy f (y)δ(x− y)

(a)
=

1
2π

∫
R

dy f (y)
∫

R
dk eik(x−y)

(b)
=

1
2π

∫
R

dk eikx
∫

R
dy f (y)e−iky︸ ︷︷ ︸

f̂ (k)

(c)
=

1
2π

∫
R

dk f̂ (k)eikx,

where in (a) we used the de�nition of the δ function given in Equation (4.3),
in (b) we inverted the order of the two integrals and in (c) we introduced
the Fourier transform de�nition as f̂k. The function f (x) is then expressed
as combination of the eigenfunctions of the second derivative – Laplacian,
in higher dimensions – operator. Here, the f̂ (k) plays the role of the “weight
coe�cient” of each eigenfunction.

Repeating these steps, we now derive a the graph Fourier transform .

4.2 the graph fourier transform
We here derive the Graph Fourier transform (GFT) de�nition, �rst writing the
heat equation on a graph, then decomposing a signal on the basis of the new
Laplacian operator as done before.

4.2.1 heat diffusion on graphs

Consider a graph G(V , E) and let ui(t) be a signal de�ned on node i ∈ V
at time t. We suppose that this signal evolves with a di�usive process on the
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Figure 4.1: Di�usion on a graph with communities. In color code we have the
value ui(t) and the title indicates the four di�erent time-steps.

graph and that, at each time-step, a i exchanges a fraction α of information
ui(t) with each of its neighbors. In equations, this becomes

ui(t + dt) = ui(t) + α ∑
j∈V

Aij(uj(t)︸︷︷︸
j→i

− ui(t)︸︷︷︸
i→j

).

This allows us to rewrite the di�usion equation in vector form as
Heat di�usion
on a graph

∂tu(t) = −α(D− A)u(t) := −αLu(t),

where we introduced the graph Laplacian matrix L. In Figure 4.1we show a
simple example of di�usion on a graph with three groups of nodes – called
communities – that are more densely connected among themselves than
with other. We initialize ui(t) = 0 for all nodes except and perform the
simulation. The result reported at three successive time-steps evidences a
di�usion process that follows a concept of proximity on the graph: �rst the
signal is propagated in the node in the same community and to few of the
other communities (t = 50), then it progressively tends to a homogeneous
distribution. Let us now formally de�ne the graph Laplacian matrix

The graph
Laplacian matrix

The graph Laplacian matrix

Given an undirected graph G(V , E) with A ∈ [0, 1]n×n as adjacency
matrix and D = diag(A1n) the diagonal degree matrix, the graph
Laplacian associated to G(V , E) is

L = D− A (4.4)

Given this matrix, we now use it to decompose the signal u on its basis and
show that it how we can relate this decomposition to a “frequency domain”.

4.2.2 decompose a signal on the graph
fourier modes

Following the same procedure as above, to de�ne the graph Fourier trans-
form we decompose the signal on the orthonormal basis de�ned by the eigen-
vectors of L. Since L is a Hermitian matrix, these eigenvectors form and or-
thonormal basis and they play the same role as eikx in the classical Fourier
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transform. We denote with xk the eigenvector k associated with λk, the k
smallest eigenvalue of L i.e. Lxk = λkxk, then

The eigenvectors of L
form an

orthonormal basis

In =
n

∑
k=1

xkxT
k .

For any vector u ∈ Rn de�ned on the vertices of G(V , E), we can write

Projecting u on the
basis of L

u = Inu =
n

∑
k=1

xk xT
k u︸︷︷︸
ûk

=
n

∑
k=1

xkûk.

By analogy with the classical Fourier transform, we de�ne û = XTu is the
GFT, having denoted with X ∈ Rn×n the matrix with the eigenvectors of L
in its columns.

The graph Fourier
transform

The graph Fourier transform

Consider an undirected graph G(V , E) with L the graph Laplacian
matrix of Equation (4.4), and a signal u ∈ Rn de�ned on the set V . Let
L = XΛXT be the eigenvector decomposition of L, with X ∈ Rn×n

the matrix with the eigenvectors of L in its columns. We de�ne the
GFT û and its inverse as

û = XTu (4.5)
u = Xû. (4.6)

The expression of the inverse GFT easily comes from the property XXT =

In. Now that we introduced a de�nition for the GFT we want to see how it
actually relates to some concept of frequency of the signal on the graph.

4.2.3 freqencies on graphs
The best way to understand the relation between the graph Laplacian and
the concept of frequency is through this lemma that we will then prove.

Lemma 4.1. Let u ∈ Rn be a vector de�ned on the vertices of a graph
G(V , E) with graph Laplacian matrix L. then

uT Lu =
1
2 ∑

i,j∈V
Aij(ui − uj)

2. (4.7)

Proof.

uT Lu = ∑
i,j∈V

uiLijuj

(a)
= ∑

i,j∈V
uiDijuj − ∑

i,j∈V
ui Aijuj
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Figure 4.2: Some graph Fourier modes on a graph. From left to right: the eigen-
vector associated to the second, third and fourth smallest eigenvalue of
L. Color-map: positive values in yellow, negative ones in blue. Picture
taken from 10.1016/j.crhy.2019.08.003.

= ∑
i,j∈V

uidiδijuj − ∑
i,j∈V

ui Aijuj

= ∑
i∈V

u2
i di − ∑

i,j∈V
ui Aijuj

(b)
= ∑

i,j∈V
u2

i Aij − ∑
i,j∈V

ui Aijuj

(c)
=

1
2

(
∑

i,j∈V
u2

i Aij + ∑
i,j∈V

u2
j Aji

)
− ∑

i,j∈V
ui Aijuj

(d)
=

1
2

(
∑

i,j∈V
u2

i Aij + ∑
i,j∈V

u2
j Aij

)
− ∑

i,j∈V
ui Aijuj

=
1
2 ∑

i,j∈V
Aij(u2

i + u2
j − 2uiuj)

=
1
2 ∑

i,j∈V
Aij(ui − uj)

2,

where in (a) we used the de�nition of graph Laplacian L = D− A,
in (b) we rewrote the degree di = ∑j∈V Aij, in (c) we exploited the
fact that i, j are dummy variables that can be inverted and in (d) we
used Aij = Aji.

The consequence of Lemma 4.1 is that the eigenvalues of L can be inter-
preted as a “frequency” of the corresponding eigenvector, in the sense that
they quantify how fast xk changes on the graph.

λk = xT
k Lxk =

1
2 ∑

i,j∈V
(xk,i − xk,j)

2,

so if the eigenvector xk changes smoothly on the graph, i.e. is has similar
value for neighboring nodes, the corresponding eigenvalue will be small.
Figure 4.2 shows in color code the frequency of the second, third and fourth
eigenvectors of L on a graph.

https://doi.org/10.1016/j.crhy.2019.08.003.
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Using the GFT notation we can write, for a generic vector u

uT Lu = u

(
n

∑
k=1

λkxkxT
k

)
u =

n

∑
k=1

λkû2
k .

The term ûk is a weight that accounts for how much u is aligned with xk
and λk is the corresponding frequency. The scalar uT Lu can hence be used
to quantify how fast the signal u changes on the graph.

To summarize, the eigenvectors of the graph Laplacian matrix are the
Fourier eigenmodes and by projecting a signal over them we are in the
Fourier space of frequencies that are the eigenvalues of the same matrix.
We now detail some basic but relevant property of the eigenvalues of the
graph Laplacian matrix that is fundamental to understand the GFT.

4.2.4 some basic spectral properties of
the graph laplacian

We here list and prove three basic facts about the graph Laplacian eigenval-
ues. We �rst formally state that L does not have any negative eigenvalues.

Corollary 4.1. The graph Laplacian matrix L is positive semi-de�nite,
i.e. it does not have negative eigenvalues. The all one vector 1n is an
eigenvector of L with eigenvalue 0.

Proof. This is a corollary to Lemma 4.1. Let xk be an eigenvector of
L with eigenvalue λk, then

λk = xT
k Lxk =

1
2 ∑

i,j∈V
(xk,i − xk,j)

2 ≥ 0.

The equality is reached for x1 = 1n that is an eigenvector because
D1n = d and A1n = d, where d denotes the degree vector.

The second property concerns the multiplicity of the 0 eigenvalue and its
relation to the connectedness of the graph.

Corollary 4.2. The multiplicity of the 0 eigenvalue of graph Laplacian
matrix L equals the number of connected components of the graph.

Proof. Also in this case the proof is a straightforward consequence of
Lemma 4.1. Consider a graph G(V , E) with c connected components
{Va}a=1,...,c so that

∪a=1,...,cVa = V
∀ a 6= b Va ∩ Vb = ∅.
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Denote with y(a) the vector with entries y(a)
i = 1 if i ∈ Va and 0

otherwise. Then

(Ly(a))i = ∑
j∈V

(D− A)ijy
(a)
j

=
c

∑
b=1

∑
j∈Vb

(D− A)ijy
(a)
j

(a)
= ∑

j∈Va

(D− A)ij

(b)
= y(a)

i · (di − di) = 0,

where in (a) we used the fact that y(a)
j = 0 for all j /∈ Va, while in

(b) that all the connections each node has are within the same con-
nected component. Given their de�nition, the indicator vectors are
orthogonal, i.e. (y(a))Ty(b) = δab and thus are di�erent eigenvectors
of L, concluding the proof.

Finally, we provide a result on the largest eigenvalue of L that will be
useful for the next sections.

Lemma 4.2. Letting dmax be the largest degree of a graph, The spectral
radius of L satis�es the following inequality.

ρ(L) ≤ 2dmax.

Proof. Let x be the eigenvector associated with the largest eigenvalue
of L, so that Lx = ρ(L)x. Consider the index i satisfying |xi| ≥ |xj|
for all j. Then we can write

|ρ(L)xi| = |(Lx)i|

=

∣∣∣∣∣∑j∈V Lijxj

∣∣∣∣∣
(a)
≤ ∑

j∈V
|Lij||xj|

(b)
≤ |xi|∑

j∈V
|Lij|

= |xi|2di

≤ |xi|2dmax,

where in (a) we used the triangle inequality and in (b) we exploited
the property of the index i.
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As one can see from the proof, this is not a very tight bound and better
results exist. Yet, this is a simple bound we can �nd without the need to
explicitly compute the largest eigenvalue. We now proceed in our discussion
with some more practical applications of the GFT to graph signal processing.

4.3 graph signal processing

4.3.1 tikhonov regularization
We formulate here a semi-supervised learning problem of on a graph that
we solve exploiting the concept of GFT. We suppose that there is a signal
u ∈ Rn de�ned on the nodes of a graph but only some entries of this signal
are known. In particular Q is the set of measured nodes meaning that we
know ui for all i ∈ Q and our problem is to guess ui for all i ∈ V \ Q. We
attempt to reconstruct the signal on the whole graph by identifying a vector
v ∈ Rn that is at the same time close to u for all i ∈ Q and that is smooth
on the graph.1 For all i /∈ Q we hence make a sort of interpolation with the
known signal values. We let ṽ, ũ ∈ R|Q| be two vectors de�ned only on the
set of labeled vertices of G(V , E)and we de�ne the following loss function

L(v, u) = ‖ũ− ṽ‖2 + γvT Lv.

The �rst term simply imposes that the loss is minimized when v is equal to
u for all i ∈ V . The second term instead represents instead the “frequency”
of v that we want to minimize to ensure the signal changes smoothly over
the graph. The factor γ is a weight that balances these two terms: large γ

will enforce high regularization, while small γ will tend to force a matching
result on the labeled nodes. To explicitly formulate the optimization problem,
we let Q ∈ Rn×n be a matrix de�ned as follows

Qij = δij1i∈Q. (4.8)

The reconstructed signal is then u∗, the solution to Tikhonov regularization.

Tikhonov
regularization

Tikhonov regularization

Consider a graph G(V , E) with Laplacian matrix L; a matrix Q as
per Equation 4.8; a signal u ∈ Rn de�ned on V ; and a positive scalar
γ. We de�ne u∗ the solution of Tikhonov regularization as

u∗ = arg min
v∈Rn

(u− v)TQ(u− v) + γvT Lv. (4.9)

1 For instance, the values ui can be the temperatures measured by weather stations at di�erent
locations. If we want to have a guess of the temperature in places where no station is available,
we may solve this problem on a spatial graph in which each node corresponds to a point on
the Earth and edges connect nodes with a distance below a given threshold.
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Figure 4.3: Tikhonov regularization for image reconstruction. Left: the origi-
nal black and white image. Center: the measured image in which only
10% of the pixels are known. Right: The reconstructed image using
Tikhonov regularization for γ = 0.1.

The optimization of Equation (4.9) can be solved analytically, in fact,

∇vL(u, v) = −2Q(u− v) + 2γLv.

Setting ∇v = 0, we get2

u∗ = (Q + γL)−1Qu.

In Figure 4.3 we show an example of application of this algorithm to recon-
struct an image given that only some pixels are known. We naturally de�ne
a grid graph that connects each pixel to its neighbors and show the input
image against the reconstructed one. This example clearly shows the power
of Tikhonov regularization.

4.3.2 filtering
We now address a closely related problem to the one above, that is �lter-
ing. Suppose that the signal u ∈ Rn is observed on all the graph vertices
but that there is some noise. Our goal is to obtain a cleaner version of the
signal, removing the noise by exploiting the fact that the signal changes
smoothly over the graph, while noise does not. Equation (4.9) can still be
used to achieve this task letting Q = In. Let us look more closely at the
solution of the smoothed vector u∗

u∗ = (I + γL)−1u

=
n

∑
k=1

1
1 + γλk

xkxT
k u

2 Note that inverting the matrix Q + γL is not computationally e�cient nor necessary and
the problem can be solved in a faster way �nding the solution to (Q + γL)u∗ = Qu with
an appropriate solver.
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=
n

∑
k=1

xk︸︷︷︸
anti−transform

1
1 + γλk︸ ︷︷ ︸

filter in frequency demain

ûk︸︷︷︸
Fourier transform

.

The order in which we should see the operations is from right to left. First
we project the signal u on the Laplacian eigenvectors, thus moving to the
Fourier space. Here we re-weight every mode with the function f (x) =

(1+ γx)−1. This is a low-pass �lter because the smallest eigenvalue λ1 = 0
gets a weight equal to one and it corresponds to the eigen-mode with small-
est frequency. As we consider larger values of k (hence larger frequencies),
f (λk) decreases, thus �ltering out the contribution of high frequency states.
Finally, we make the anti-transform and get back to the original space.

Now that we have introduced the concept of �ltering, we can design any
�lter that acts in the frequency domain so to get a good result. Considering
a general �ltering function f , we can write

Filtering in the
Fourier space

u∗ =
n

∑
k=1

xk f (λk)ûk. (4.10)

A relevant problem is that to solve exactly this problem, we must compute
all the eigenvalues of L which requires O(n3) operations and is unfeasible
for large networks. If we use a polynomial �lter (or the polynomial approx-
imation of the �ltering function), however, we can greatly simplify things.
Suppose that

Polynomial �lter f (x) =
p

∑
a=0

αaxa,

then we can rewrite Equation (4.10) as

u∗ =
n

∑
k=1

p

∑
a=1

xkapλ
p
k ûk

(a)
=

n

∑
k=1

p

∑
a=1

apLpxkûk

(b)
=

n

∑
k=1

p

∑
a=1

apLpxkxT
k u

(c)
=

p

∑
a=1

apLpu,

where in (a) we exploited the fact that xk is an eigenvector of Lp with
eigenvalue λ

p
k and in (b) we explicitly rewrote ûk = xT

k u and in (c) we
used In = ∑n

k=1 xkxT
k . From the last equation we can see that the smoothed

function can be computed using a polynomial of L, without the need of di-
agonalizing the matrix. One can still argue, however, that for large p, the
matrix Lp is quite dense and thus the computational complexity to perform
this operation is still very high. What has to be noticed is that we do not
need to compute Lp but actually only Lpx and this can be done e�ciently.
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Figure 4.4: Polinomial approximation of the exponential decay. The exponen-
tial decay function is shown in black for γ = 1, while in color we have
the p order polynomial approximation for di�erent values of p. The or-
ange background indicates the values of t for which the approximation
must not diverge and it spans from 0 to γρ(L).

In fact, let yp = Lpx, then Lp+1x = Lyp. This is the product between a
(presumably sparse) matrix and e vector. Iterating this for all p, we see that
the calculation can be performed very e�ciently.

We now conclude with an example. We consider the NYC taxi dataset con-
taining several information about taxi drives, including the region (of NYC)
of origin and destination and fare of the ride. These data can be found here.
The city is divided in approximately 300 regions and we compute the av-
erage fare of the destination for each origin. This signal signal is strongly
auto-correlated, meaning that nearby regions have similar average fares to
be paid. We now introduce some noise in this dataset, taking a random sam-
ple including 25% of the total number of regions and randomly reassigning
them the average fare amount. Our goal is to reconstruct the original sig-
nal by �ltering out the high frequency components introduced by noise and
exploiting geometrical proximity to smooth the signal.

From the dataset we can extract the coordinates of the centroid of each
region and use that to build a graph. We generate it using a fast k nearest
neighbors algorithm that connects each node i to its k closest nodes. Note
that the matrix we get in this way is not symmetric: Palermo and Roma are
(probably) the closest provinces to Sassari, but the opposite is not true. We
then must �rst symmetrize the adjacency matrix to get the correct represen-
tation of our graph. We then design an exponential �lter e−γx, exploiting its
polynomial approximation, i.e.

f (x) =
p

∑
a=1

(−γx)a

a!
,

for some p. As we know, the modulus of a polynomial function tends to
in�nity for x → ∞ and is thus not a good approximation of the exponen-
tial function. Yet, the argument of the function is bounded by γρ(L) and

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page


48 graph fourier transform

Original Noisy Reconstructed

Figure 4.5: Signal �ltering of taxi fares in New York. Left panel: original signal
of the average fare of the region of destination. Center panel: noisy ver-
sion of the signal. Right panel: smoothed signal using the exponential
�lter and p = 30.

we must choose the order of the polynomial p so that is well approximates
the exponential function for all x ∈ [0, γρ(L)]. Note that, from 4.2 we do
not need to explicitly compute ρ(L) as we have a bound as per Lemma 4.2.
Figure 4.4 shows the function f (x) for di�erent values of p: the colored
background denotes the region in which the �lter must well approximate
the exponential, hence p = 30 is a reasonable choice to proceed. Figure 4.5
shows in color code the result of this experiment.

4.4 conclusion
In this chapter we introduced the concept of Fourier transform on graphs
and showcased to example os application to signal reconstruction and de-
noising. The GFT is an important tool because it allows one to introduce the
concept of “frequency” of a signal on a graph i.e. , of how fast it changes of the
neighbors. Even if we did not discuss it, the relevance of the GFT goes well
beyond these two examples and is at the basis of the convolutional graph
neural networks. Note that the convolution of two function f , g can be writ-
ten exploiting their Fourier transforms f̂ , ĝ as

( f ∗ g)(x) =
1

2π

∫
R

dk f̂ (k)ĝ(k)eikx,

i.e. the Fourier transform of the convolution of two functions if the product
of their Fourier transforms. Consequently, this allows one to de�ne the con-
volution on a graph exploiting the de�nition of GFT and, in fact, the graph
Laplacian matrix is a fundamental building block of convolutional neural net-
works. As a �nal remark, we would like to stress that, even though we only
mentioned the relation between the matrix L and the GFT, other matrices
can similarly be used to de�ne the concept of Fourier transform on graphs.
One of the most commonly adopted ones is the normalized Laplacian

Ln = In − D−1/2AD−1/2. (4.11)
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4.5 references
• Ricaud, Borgnat, Tremblay, Gonçalves, Vandergheynst: Fourier could
be a data scientist: From graph Fourier transform to signal processing on
graphs
This is a quite pedagogical review on GFT.

• Tremblay, Gonçalves, Borgnat: Design of graph �lters and �lterbanks.
This is a more advanced reference with the focus on graph �lters.
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