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5.1 community detection
Real-world networks often have groups of nodes that are more densely con-
nected among themselves than with others: we refer to this recurrent topo-
logical property as presence of a community structure. Let us list some exam-
ples of communities in real-world networks:

• In human social networks edges indicate an interaction between indi-
viduals. Depending on the system under consideration, one can �nd
communities that represent groups of friends, people that speak a com-
mon language, colleagues of people from a same party. A practical ex-
ample is a co-authorship network of researchers, in which an edge
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Figure 5.1: Agraphwith communities. Each community is marker coded. Picture
taken from Newman, Netwoks.

between two nodes (researchers) is drawn if they co-authored a paper
and communities correspond naturally to research �elds.

• Social networks such as Facebook or, more generally the Web have a
community structure made of groups of related pages or accounts.

• In biology, groups of molecules form functional modules that can be
represented as communities of a network.

• If one identi�es the nodes with the words of a dictionary and edges
represent co-occurrence in a text, then communities indicate words
that are related, such as milk and cow.

Some examples of
graph with

communities

More generally, given a set of objects (say images) that can be related, one
can design a graph in which each node corresponds to an element and an
edge represents the relation between pairs of objects. Communities then cor-
respond to categories of objects (such as images of dogs vs images of cats).
Community detection (CD) is the task of identifying these communities on
a given graph. Given the broad range of systems that can be modeled with
networks, CD has important applications in categorization. We now give a
broad overview of some building blocks of CD that need to be considered to
have a full picture of the problem at hand.

5.1.1 defining communities
A relevant problem of CD is that, although it appears as an intuitive task,
strictly speaking it is ill-de�ned. In fact there exist no shared consensus in
the scienti�c literature on what a community really is. Every CD algorithm is
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based on a particular de�nition – that can be more or less explicit – of com-
munities and, from an operational viewpoint, one can de�ne communities as
the output of a particular CD algorithm.

Communities are
ill-de�nedIn the remainder we will consider CD only for undirected and unweighted

graphs, with the additional requirement that communities are not overlap-
ping. This means that the output of a CD algorithm can be represented in
the form of a vector ` ∈ [k]n, where k is the number of communities and n
the number of nodes. This labeling vector associates each node to a unique
class. Denoting with Va = {i ∈ V : `i = a} the set of all nodes with label
a, we have that

V =
k⋃

a=1

Va ;

Va ∩ Vb = ∅ for a 6= b.

It has to be noted, however, that also this requirement can be questioned and
there are many algorithms that instead consider a more general concept of
overlapping communities. An example of a non-overlapping node partition
on a graph is shown in Figure 5.1.

5.1.2 the number of communities
Community detection is an inherently unsupervised task, meaning that the
input of CD is a graph G(V , E) without any additional information. Con-
sequently, a problem is related to the fact that the number of communities
itself needs to be determined. This is a signi�cant challenge, as we will see in
the remainder. Intuitively, the problem is related to the fact that comparing
partitions with the same number of communities may be a rather straight-
forward task, but not the same can be said for partitions into a di�erent
number of groups. As a consequence, some algorithms require the number Determining the

number of
communities is a
di�cult task

of communities k is required as an algorithm input and leave the problem of
�nding a reasonable k to the user. Other algorithms adopt greedy strategies
to compare partitions with di�erent numbers of communities and su�er for
several limitations for this very reason, as we will see in the remainder. Gen-
erally speaking, very few methods are known to reliable estimate k and they
leverage speci�c de�nitions of communities. For this reason, when one is
performing CD, it should be well aware of the fact that di�erent algorithms
may yield very di�erent responses and a holistic vision may help one have a
clearer picture. But how do we compare the outputs of di�erent algorithms?

5.1.3 comparing partitions
The output of a CD algorithm is a node partition, i.e. a subdivision of the
graph nodes into sets. Importantly, the naming of the subsets that we pro-
vide (say a and b, 0 and 1, red and blue) are only meaningful when consider-
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ing di�erent nodes in the same partition. If instead we consider two di�erent
partitions, the naming we use can be interchanged (what we used to call b
is now a) or even be completely di�erent (we call them c and d). As a conse-
quence, partitions cannot be directly compared and more re�ned strategies
need to be adopted.

Two di�erent naming
strategies of the same

partition

A powerful metric to compare di�erent partitions is based on the mutual
information. The mutual information between two random variables X and
Y quanti�es how much is known of X if Y is given. In the example on the side
bar, knowing that a point is red in the �rst partition implies that it is green in
the second. The metric we will adopt in the following is the Adjusted mutual
information (AMI) that is a rescaled version of the mutual information so that:
AMI = 1 if the partitions are equivalent; AMI = 0 if the partitions contain
as much information of one another as a random guesser. Notably, the AMI
also allows us to compare partitions with a di�erent number of communities.

5.1.4 computational complexity

Large graphs require
algorithms with a

computational
complexity scaling

linearly with m

As a �nal remark, we should be aware that CD is a practical task that is
executed by algorithms that should be fast, in order to be deployable. The
measure of speed of an algorithm is its computational complexity, i.e. how
many operations the algorithm performs with respect to the number of in-
put variables. For CD there are two main quantities of interest that determine
the computational complexity: the number of edges m of G(V , E) and the
number of communities k. A �rst remarkable distinctions should be made
between polynomial algorithms and NP-hard ones. Polynomial algorithms
require a number of operations scaling asO(mαkβ) for some α, β ≥ 0, while
NP-hard problems likely1 require an number of operations that goes to in�n-
ity faster than any polynomial. In practical terms, NP-hard problems cannot
be solved unless for very small input graphs, since the number of opera-
tions required may even scale exponentially with the number of nodes. In
practice “NP complete” should sound to your ears as “impossible to solve”.
Polynomial-time algorithms are the only ones that can used, but polynomial
does not mean fast. In fact, on an ordinary personal computer, running an
algorithm with complexity O(n3) may become prohibitive in terms of time
and memory for n > 104. In practice, fast algorithms that can be applied to
large graphs should scale linearly with the number of edges m.

We now proceed providing an overview of some popular approaches to
CD, alongside with their strengths and limitations.

1 Even if it is not proved, it has be conjectured that NP-hard problems do not admit a polyno-
mial time solution.



5.2 optimization approaches 55

Figure 5.2: Graph cut evaluation. Two partitions of the same graph: the one on
the left has a graph cut equal to 2, while the one on th right has a graph
cut equal to 1.

5.2 optimization approaches
De�ning communities as the solution of an optimization problem consists
in identifying a quality function assessing how satisfactory a given class
partition is on a graph. Such function should depend on the partition ` and
the graph G(V , E), in the form of its adjacency matrix A.

5.2.1 some definitions
The simplest method to de�ne such a cost function consists in literally count-
ing how many edges fall among nodes in the same di�erent communities and
minimize it.2 We then introduce the graph cut

The graph cut
QCut

A (`) =
1
2

k

∑
a=1

∑
i∈Va

∑
j/∈Va

Aij, (5.1)

where we recall that Va = {i ∈ V : `i = a} is the set of all nodes
with label p. The goal is to �nd ` that minimizes QCut

A , under the constraint
` 6= 1n, which prevents all nodes from being assigned to the same cluster.
Yet, for how reasonable this function may seem, it is too simple and it tends
to create partitions in which a single node is isolated from all others, as
shown in Figure 5.2. Even if these partitions are so that nodes in the same
community are more connected with one another than with other nodes,
they do not encode a common sense meaning of community.

To cope with this problem, we must introduce the requirement that the
community is su�ciently large. We do so introducing the ratio cut (RCut), in
Equation (5.2) and the normalized cut (NCut) in Equation (5.3).

QRCut
A (`) =

1
2

k

∑
a=1

1
|Va| ∑

i∈Va

∑
j/∈Va

Aij (5.2)

2 Note that, since the number of edges of a given graph its �xed, we are also maximizing the
number of edges between nodes in the same community.
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QNCut
A (`) =

1
2

k

∑
a=1

∑i∈Va ∑j/∈Va
Aij

∑i∈Va ∑j∈V Aij
, (5.3)

Another quality function that is very popular is the modularity:

Normalized cut

Modularity QMod
A (`) =

1
4|E | ∑

i,j∈V

(
Aij −

didj

2|E |

)
δ(`i, `j), (5.4)

The modularity attributes a large score to con�gurations in which nodes in
the same community are connected by a greater than expected3 number of
edges. In fact, for a �xed degree sequence, didj/2|E | is the probability that
nodes i and j are connected if edges were placed at random. The modularity
has subsequently been exploited to de�ne CD algorithms in which the label
assignment is obtained maximizing the QMod

A (`). In practice, a modularity
equal to 0.4 is considered to be a good partition, even if we will discuss how
this metric should be taken with caution. Since modularity maximization is
one of the most popular methods for CD, we will look at it in more detail,
describing a modularity maximization algorithm.

5.2.2 louvain algorithm
Given its popularity, we here will discuss one algorithm to optimize the mod-
ularity cost function, that is called Louvain algorithm, named after the uni-
versity of origin of the researchers that introduced it. The �rst, fundamental
observation is that Modularity (but also RCut, NCut) optimization is an NP
hard problem. We thus need to �nd some greedy algorithm to �nd a reason-
able approximation of this maximum.

The Louvain algorithm indeed de�nes an approximate strategy to maxi-
mize the modularity and it is composed of two steps. The �rst starts from a
con�guration in which each node is set in a di�erent community and then
each single nodes is moved to the community of one of its neighbors if there
is a gain in modularity in doing so. When no gains in the modularity can be
obtained, step 1 is concluded. Communities are then represented as nodes
and the edges are given a weight according to how many links run between
one community and the other. The process is iterated until there is no gain
in merging nodes. Figure 5.3 summarizes the steps of Louvain algorithm.

The main advantage of Louvain algorithm is related to its speed. since the
computation of the modularity variation can be performed very e�ciently.
Letting m = 2|E | for simplicity, we can rewrite the modularity as follows:

QMod
A (`) =

1
m ∑

i,j∈V

(
Aij −

didj

m

)
δ(`i, `j)

3 In other words, the modularity compares the realization of the matrix A with a typical real-
ization of a null model, called con�guration model.
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Figure 5.3: Schematic representation of Louvain algorithm. Each pass is made
of two phases: one where modularity is optimized by allowing only local
changes of communities; one where the found communities are aggre-
gated in order to build a new network of communities. The passes are
repeated iteratively until no increase of modularity is possible. Picture
taken from Blondel et al, Fast unfolding of communities in large networks.

(a)
=

1
m

k

∑
a=1

k

∑
b=1

∑
i∈Va

∑
b∈Vb

(
Aij −

didj

m

)
δ(a, b)

=
1
m

k

∑
a=1

∑
i,j∈Va

(
Aij −

didj

m

)
(b)
=

1
m

k

∑
a=1

∑
i∈Va

(
d(a)

i −
diΣ

(a)
tot

m

)

(c)
=

k

∑
a=1

Σ(a)
in
m
−
(

Σ(a)
tot
m

)2

, (5.5)

Rewriting the
modularity in a
simpler form

where in (a) we denoted with Va = {i : `i = a}, in (b) we denoted
with d(a)

i the number of connections node i has with nodes in community
a and in (b, c) Σ(a)

in , Σ(a)
tot are the number of connections among nodes4 in

community a and the total number of connections nodes in community a
have. From Equation (5.5), we can write the change of modularity obtained
by moving a node i (that forms a community on its own) to class a to which
one of its neighbors belongs to:

∆QMod
A (`) =

Σ(a)
in + d(a)

i
m

−
(

Σ(a)
tot + di

m

)2


︸ ︷︷ ︸
new modularity

−
[ modularity from a︷ ︸︸ ︷

Σ(a)
in
m
−
(

Σ(a)
tot
m

)2

−

modularity from i︷ ︸︸ ︷(
di

m

)2
]

︸ ︷︷ ︸
old modularity

4 Note that each edge is counted twice.
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Figure 5.4: Evaluation of Louvain algorithm. The Louvain algorithm was run
100 times on a random graph with communities. The left plot reports
the histogram of the modularity obtained after each run. In the right
plot we selected 1000 random pairs and computed for all of them the
AMI and plotted the histogram.

Note that the order in which the merging are attempted matters to determine
the outcome and this is the random component of this algorithm. Figure 5.3
summarizes the two steps of the Louvain algorithm.

Computational complexity

The evaluation of ∆QMod
A (`) is performed in a constant number of opera-

tions, i.e. independent of n, k and it has to be performed at most |E | times
(each node for each of its neighbors). After the �rst iteration this operation
becomes even faster, and the algorithm’s complexity is hence O(|E |) mak-
ing it particularly appealing for large networks.

5.2.3 pitfalls of optimization approaches
De�ning communities according to a score function may seem a particularly
good strategy because it gives a common sense de�nition of communities,
expressing a property of a good class assignment. This approach has, how-
ever, strong algorithmic limitations.

• Optimization problems such as NCut, RCut and the modularity maxi-
mization are NP hard and only approximate solutions can be obtained
by e�cient algorithms. For this reason, we must inderline that the out-
put of the Louvain algorithm (or any other modularity maximization
technique) is not guaranteed to be the maximum modularity partition.

• There exists a large number of structurally di�erent con�gurations
having values of Q•A value very close to the maximum. Running mul-
tiple times an approximate algorithm looking for the optimum of Q•A
may output similar results in terms of the score, but corresponding to
rather di�erent label assignments, as shown in Figure 5.4. This makes
the use of greedy algorithms, such as Louvain, potentially unreliable.
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• Talking about the modularity, it is known that even in the presence
of well de�ned clusters (such as cliques), optimizing the modularity
score over the number of clusters k, small communities may be joined
together, causing the so-called resolution limit. This is a consequence The resolution limit

on a ring of cliques
graph: the colour is
the assignment
obtained maximizing
the modularity

of the fact that the values of QMod
A are not directly comparable for

di�erent values of k. Even if formal results have been derived for the
popular modularity, similar e�ects are expected to be seen also for
other cost functions. To circumvent this problem it was introduced a
generalized modularity, depending on a positive regularizer γ:

QGMod
A (`; γ) =

1
4|E | ∑

i,j∈V

(
Aij − γ

didj

2|E |

)
δ(`i, `j).

Tuning the value γ it is possible to identify communities at di�erent
length scales, but this requires an ad hoc solution, depending, in gen-
eral, on the underlying graph.

An ER graph with a
partition in 34
communities and
modularity 0.52

• From the optimization perspective, communities can be de�ned even
on graphs with no community structure, such as Erdős-Rényi (ER) ran-
dom graphs. This is not only a philosophical problem, related to the
fact that a good CD algorithm should be capable of detecting whether
or not communities are present on the graph. In fact, considering for
instance the modularity, one expects that on ER graphs, any partition
satis�es QMod

A ≈ 0. It has however been shown that high modularity
partitions can be found on ER graphs, evidencing that the modularity
maximization may lead to over-�tting.

These problems altogether are severe limitations of the optimization ap-
proach to CD and justify the adoption of a di�erent strategy, based on infer-
ence from the Degree corrected stochastic block model (DCSBM). We will show
how Bayesian inference is able to overcome the aforementioned limitations
of optimization and how it is able to motivate their origin.

5.3 inference in the dcsbm
The Bayesian approach relies on the formulation of an inference problem
from a generative model of the network. In fact, we suppose that there exists
a model P(A|`) creating the adjacency matrix given the node partition into
communities and our goal is to estimate ` from an observation of A. The
Bayes formula then reads

The Bayes formula

Posterior︷ ︸︸ ︷
P(`|A) =

Likelihood︷ ︸︸ ︷
P(A|`)

Prior︷ ︸︸ ︷
P(`)

P(A)︸ ︷︷ ︸
Evidence

.

In CD we generally suppose a uniform prior, since no information is avail-
able on the community structure. We now de�ne the DCSBM model to gener-
ate a random graph with communities.
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5.3.1 the degree corrected stochastic
block model

The DCSBM can be seen as a generalization of the con�guration model.

The degree corrected stochastic block model

De�nition 5.1. Let ` ∈ {1, . . . , k}n be the class label vector, where
k is the number of classes and P(`i = a) = πa and let C ∈ Rk×k be
a symmetric matrix with positive elements. Let θ ∈ Θ = [θmin, θmax]

be a random variable that encodes the intrinsic node connectivity, dis-
tributed according to ν, satisfying E[θ] = 1, E[θ2] = Φ = On(1). For
each node, θi is drawn independently at random from ν.

The entries of the matrix Aij = Aji are set to one independently at
random with probability

P(Aij = 1) = min
(

θiθj
C`i ,`j

n
, 1
)

,

and are equal to zero otherwise.

From a simple computation, one can see that the expected average degree
of node i is proportional to θi, i.e. E[di] ∝ θi. Consequently the vector θ =

(θ1, . . . , θn) can be used to produce any degree distribution on the graph.
The matrix C is the class a�nity matrix, generating the community structure.Interpreting the

DCSBM In fact, if the diagonal elements of C are larger than the o�-diagonal ones,5
it is more likely to be connected to someone in your own community than
to someone in another community. The vector π ∈ Rk is de�ned so that πa

is the expected fraction of nodes with label a.

Given the generative model of De�nition 5.1 the labels are indisputably
de�ned by the vector ` and the number of classes by k. Before discussing
how to perform inference according to this method, let us consider a very
important result about inference in the DCSBM.

5.3.2 information theoretic limits in
the dcsbm

Inference cannot be performed for any values of the entries of C. Suppose the
extreme case in which all entries of C are equal: the resulting graph is just
a realization of the con�guration model in which communities do not exist

5 Note that, if the converse is true, i.e. nodes get connected more often to nodes in a di�er-
ent community (e.g. adjective and nouns in a text), then we talk about disassortativity but
communities are still de�ned.
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Figure 5.5: Schematic representation of the phase transition in the sparse DCSBM.
The y axis represents the performance of reconstruction. Picture adapted
from Moore, The Computer Science and Physics of Community Detection.

and hence cannot be retrieved. Actually, it was proved that there should be
a minimal distance between the probability of connection within and across
community to allow the graphs to be statistically distinguishable. We con-
sider the case of k = 2 communities in which the diagonal entries of C are
cin, while the o�-diagonal are cout in which we have a proper phase transi-
tion, determined by the existence of a detectability threshold. We formulate
this formally in the following theorem.

The detectability
threshold

Theorem 5.1. Consider a graph generated by the DCSBM with k = 2 commu-
nities. Let the diagonal entries of C be cin and the o�-diagonal ones be cout and
denote with c = (cin + cout)/2 the expected average degree. Let the control
parameter α be

α = (c− cout)

√
Φ
c

, (5.6)

then detection is feasible if and only if α > 1.

In the case of k > 2 there are conjectures that state the existence of three
regions: undetectable in which it is impossible to make reconstruction; hard
in which if we initialize the Bayes estimator to the ground truth we could
obtain the good solution, but not for an arbitrary intial condition; easy in
which the communities can be recovered, as summarized in Figure 5.5.

5.3.3 dcsbm bayesian inference

Using the uniform prior and assuming θiθjC`i ,`j /n < 1 for all i, j,6 the pos-
terior distribution reads:

P(`|A) ∝ ∏
(ij)∈E

θiθj
C`i ,`j

n
· ∏
(ij)/∈E

(
1− θiθj

C`i ,`j

n

)

∝ exp

 ∑
(ij)∈E

log
(

C`i ,`j

)
+ ∑

(ij)/∈E
log
(

1− θiθj
C`i ,`j

n

) . (5.7)

6 This can be done without loss of generality in the limit for n→ ∞.
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Note that the vector θ can be easily estimated from the degree distribution
and can be used as a known variable. Obtaining the marginal node proba-
bility from Equation (5.7), one can assign to each node the label maximiz-
ing the node marginal. A possible way to accomplish this task is to sample
from the distribution (5.7) using Monte Carlo Markov chains. The Bayes opti-
mal procedure is, however, typically quite expensive from the computational
viewpoint. Luckily, for sparse graphs, the asymptotically exact expression
of Pi(`i|A) can be e�ciently obtained using the cavity method discussed
in Chapter 3. The computational complexity of the cavity method for CD
scales as O(|E |k2), making it computationally e�cient in the sparse regime
in which c = On(1) (or, equivalently, |E | = On(n)). The main interest in
the cavity method, however, comes from the fact that it is asymptotically
exact on sparse graphs.

5.3.4 optimization vs model based: a sta-
tistical physics perspective

To conclude this section, let us relate the model-based and optimization-
based approaches.

As it was described in Section 5.2, de�ning communities as the solution
to an optimization problem makes a requirement on what a good class parti-
tion should be like, with no hypothesis on the underlying graph. This makes
it a seemingly good way of performing CD on arbitrary graphs. On the oppo-
site, designing an algorithm for CD inspired from DCSBM gives a good mathe-
matical control and, in some cases, information theoretic guarantees. Never-
theless, the model-based approach relies on some assumptions that are not
necessarily veri�ed on arbitrary graphs. This may lead to thinking of the
inference approach as a mere mathematical exercise. This section on the op-
posite argues that the model-based approach should be generally preferred
to the optimization one. In fact, the latter actually relies on some implicit hy-
pothesis on the matrix A and its limitations can be clearly interpreted from
a Bayesian perspective.

To simplify the discussion, let us consider the k = 2 class DCSBM. In this
case, letting σi = 1 if `i = 1 and σi = −1 if `i = 2, the posterior probability
P(`|A) ≡ P(σ|A) of Equation (5.7) can be rewritten for n→ ∞ as

P(σ|A) ∝ exp

{
∑

(ij)∈E
log
(

C`i ,`j

)
− 1

2 ∑
i∈V

∑
j/∈∂i

θiθj
C`i ,`j

n

}
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∝ exp

{
∑

(ij)∈E
log(cin)

1 + σiσj

2
+ log(cout)

1− σiσj

2
− 1

2 ∑
i∈V

∑
j/∈∂i

θiθj

[
cin

n
1 + σiσj

2
+

cout

n
1− σiσj

2

]}

∝ exp

{
∑

(ij)∈E

1
2

log
(

cin

cout

)
︸ ︷︷ ︸

β

σiσj −∑
i∈V

σi ∑
j/∈∂i

θiθj
cin − cout

4n
σj︸ ︷︷ ︸

hi(σ)

}

∝ exp

{
∑

(ij)∈E
βσiσj −∑

i∈V
hi(σ)σi

}
≡ e−βH(σ). (5.8)

Equation (5.8) precisely corresponds to the Boltzmann distribution for the
Ising Hamiltonian with local �elds, depending on the con�guration σ. The
Bayesian approach is equivalent to �nding the magnetization m = 〈σ〉β,
associated to the HamiltonianH(σ). Finding the ground state ofH(σ), i.e.
the con�guration σ corresponding to its minimum, instead is equivalent to
�nding the maximum of the generalized modularity QGMod

A (`; γ), in fact, in
the large n limit for sparse graphs ∑j/∈∂i ≈ ∑j∈V and thus

E [H(σ)]

β
= ∑

i,j∈V

(
Aij −

2(cin − cout)

(cin + cout)β

E[di]E[dj]

m

)
σiσj,

which is closely related to the regularized modularity.

This observation puts us in position to make two very important remarks.
The most questionable assumption of the DCSBM is that of generating edges
independently at random. In terms of log-likelihood, this translates into a
sum over all graph edges, as shown in Equation (5.8). This sum is the same ap-
pearing in QGMod

A , QMod
A , QRCut

A and QNCut
A that can be associated to a gen-

erative model (di�erent from the DCSBM) in which the edges of G(V , E) are
also generated independently at random, evidencing how the functions Q•A
rely on some “silent” assumptions on the matrix A.

Furthermore, from a statistical physics perspective, the functions Q•A (even-
tually taken with a negative sign) can generally be considered as Hamiltoni-
ans, i.e. cost functions associated to a given label con�guration. In all cases
(also for the DCSBM), the Hamiltonian is what de�nes communities from ami-
croscopic perspective. Stating which de�nition is the best is a di�cult task
that we are not going to investigate. However it should be remarked that
what is essentially di�erent in the optimization and inference approaches
is how to retrieve the communities from the Hamiltonian: in one case they
are obtained from the marginals of the Boltzmann distribution, in the other
from the ground state energy. The Hamiltonian, or equivalently the cost
Q•A is what de�nes the concept of communities. The optimization approach,
however, only takes into account the minimum of the Hamiltonian, disre-
garding the rest of its pro�le. Consider two functions Q•A, one being convex
and the other having multiple minima with similar values of Q•A(`). These
two settings are clearly di�erent: in the �rst the label assignment is uniquely
de�ned by minimum of Q•A, whereas, in the second, several con�gurations
could be considered as almost equally good community structures. Taking
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Figure 5.6: Left: a graph with two communities, highlighted with a di�erent color
code. Right: a 2 dimensional node embedding of the graph on the left.
The embedding dimensions are here denoted with as features.

only the minimum of the Hamiltonian means to disregard all other con�gu-
rations that may have, instead, a potentially great importance. The Bayesian
approach does not consider exclusively the minimum of Q•A, but the whole
energy landscape, giving a generally richer description of the problem.

5.4 spectral clustering
Networks are complex mathematical entities that are hard to represent hence
to deal with. The di�culty of de�ning communities is a direct consequence
of this complexity of representation. A powerful method to perform network
analysis that can also be adapted to CD is to perform an embedding, i.e. in
providing a representation of the network in a Euclidean space.

Node embedding

Given a graph G(V , E), a node embedding consists in identifying a
mapping f : V → Rd, where d is the embedding dimension. Each
node i is associated with a vector xi ∈ Rd, called embedding vector.

An embedding is de�ned so that nodes that are structurally similar (for
instance, that belong to the same community) are represented with similar
vectors. In Figure 5.6 we give a pictorial representation of a node embedding
applied to a graph with two communities. Once the graph has been repre-
sented as a set of points in a Euclidean space, CD simply translates into clus-
tering, i.e. the objective of grouping together points in a high dimensional
space. Several algorithms exist to accomplish this task and can be dividedClustering

in two groups: those in which partitions are attributed solving an optimiza-
tion problem such as k-means, k-medoids, expectation maximization; those in
which boundaries between clusters are drawn where the density of points
is minimal, such as DBSCAN and OPTICS.
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In this section we introduce Spectral clustering (SC) that is one of the most
well studied class of algorithms to perform embeddings for CD and it has
strong relations with both the optimization and Bayesian approaches.

5.4.1 vanilla spectral clustering
In SC algorithms the embeddings are obtained with the eigenvectors of a
suited graph matrix representation, M. De�ning what suited means is a
hard task and several possible choices are plausible. One possibility would
be M = A, the adjacency matrix, while one of the most popular (but not
necessarily one of the best) if the graph Laplacian matrix L = D − A. SC
bene�ts from solid theoretical foundations and high explainability. All SC al-
gorithms can be reduced to a very similar structure7 that we summarize in
Algorithm 5.1. Here the number of clusters k is required as an input but, as
we will see in the next sections, SC algorithms provide methods to estimate
k in a theoretically well grounded way. The basic intuition of SC is that some
eigenvectors of M are informative and carry information about the graph
community structure. These eigenvectors are typically considered to be as
many as the number of communities.

Algorithm 5.1 : Spectral clustering
Input : Dataset with n items, k number of clusters
Output : ` ∈ {1, . . . , k}n label assignment

1 begin

2 De�ne suited matrix representation of the dataset M ∈ Rn×n;
3 Stack the k largest (or smallest) eigenvalues of M in the columns

of X ∈ Rn×k (Embedding);
4 Estimate community labels ` with a small dimensional clustering

algorithm performed on the rows of X (Clustering) ;
5 return `

6 end

The complexity of Algorithm 5.1 scales withO(|E |k2) that is the number
of operations required to compute the eigenvectors. The clustering step typ-
ically requires a lower number of operations. This complexity thus scales
well with the matrix size, but may become prohibitive when considering
graphs with a very large number of communities. We proceed motivating
Algorithm 5.1, describing its relation with other techniques adopted for CD.

7 Note that this is not a strict rule and there exist some SC that follow a structure that is similar
to the one of Algorithm 5.1, but it is not exactly the same.
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5.4.2 the relation with optimization
approaches

SC has a strong relation with optimization algorithms. We explicitly derive
this formal relation for theRatioCut optimization problem and brie�y overview
the results for other optimization functions.

Lemma 5.1. Consider a node partition ` on an undirected and un-
weighted graph with adjacency matrix A. Let L = D− A be its associ-
ated graph Laplacian matrix. Let H ∈ Rn×k be the matrix with entries
Hia = δ`i ,a/

√
Va, where Va = |Va|. Then

QRCut
A (`) =

1
2

Tr(HT LH).

Proof. Exploiting Lemma 4.1, we can write(
HT LH

)
aa

(a)
= hT

a Lha

=
1
2 ∑

i,j∈V
Aij
(

Hia − Hja
)2

=
1
2

k

∑
α=1

k

∑
β=1

∑
i∈Vα

∑
j∈Vβ

Aij

(
δα,a√

Va
−

δβ,a√
Va

)2

=
1

2Va

k

∑
α=1

k

∑
β=1

∑
i∈Vα

∑
j∈Vβ

Aij
(
δa,α + δa,β − 2δa,αδa,β

)
(b)
=

1
Va

 k

∑
β=1

∑
i∈Va

∑
j∈Vβ

Aij − ∑
i∈Va

∑
j∈Va

Aij


=

1
Va

∑
β 6=a

∑
i∈Va

∑
j∈Vβ

Aij

=
1

Va
∑

i∈Va

∑
j/∈Va

Aij ,

where in (a) in denoted with ha the a-th column of H and in (b)
we exploited that A is symmetric. To conclude the proof, we simply
recall the de�nition of the RatioCut

QRCut
A (`) =

1
2

k

∑
a=1

1
Va

∑
i∈Va

∑
j/∈Va

Aij

=
1
2

k

∑
a=1

(
HT LH

)
aa

=
1
2

Tr
(

HT LH
)

.
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The relation between
SC and the RatioCut
cost function

Lemma 5.1 puts in direct relation the optimization of the RatioCut func-
tion with the graph Laplacian matrix. Yet, however we may formulate it, this
problem is still NP-hard, hence it cannot be easily solved. The SC approach,
however, allows one to obtain an approximate solution, by relaxing the op-
timization problem from a discrete set to the whole real axis. First notice
that HT H = Ik, then the relaxation of the RatioCut optimization problem is
obtained by solving

Relaxed optimizationX = arg min
H∈Rn×k : HT H=Ik

Tr(HT LH) . (5.9)

The solution of this optimization problem is the matrix X storing in its
columns the k eigenvectors of L with smallest eigenvalues. We stress that
this is not an exact solution because the optimization problem is not run
over all the discrete values that H can take, but over all the real space. To
summarize, with reference to Algorithm 5.1, here we choose M = L and
extract the k smallest eigenvalues of L to obtain the embedding.

Similarly to the derivation detailed above, one can show that the Normal-
ized Cut can be approximated by SC using the k eigenvectors associated
with the smallest eigenvalues of Lrw = In − D−1A, or equivalently the
k largest of D−1A. Often, instead of considering Lrw the matrix Lsym =

In − D−1/2AD−1/2 is preferred. This matrix has the same eigenvalues of
Lrw and its eigenvectors are closely related but it has the advantage of being
symmetric. By relaxing the modularity, instead, one can de�ne a SC algo-
rithm that exploits the eigenvectors of the modularity matrix A− ddT

2|E | that
are closely related to the ones of the adjacency matrix itself.

5.4.3 a random matrix perspective
The previous section justi�ed SC from the perspective of optimization algo-
rithms. We now show its relation with random generative models. We will
here consider the particular case of a graph generated from the DCSBM of
De�nition 5.1 model with k = 2 classes and and a homogeneous degree
distribution. This choice is only made for simplicity. We will then study the
spectral properties of the adjacency matrix of a graph generated from this
model. We use in particular the notation Cab = cin if a = b and cout other-
wise. The �rst step consists in writing the random matrix A as the sum of
its expectation and white noise:

A = E[A]︸ ︷︷ ︸
expectation

+ X︸︷︷︸
white noise

.

The expectation (E[A])ij = C`i ,`j /n is a low rank matrix with only two
eigenvalues that are non-zero. The leading one equal to c = (cin + cout)/2
(the expected average degree) with eigenvector 1n and the second one equal
to (cin − cout)/2 with eigenvector σ, where σi = 1 if i ∈ V1 and σi = −1
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Figure 5.7: Visualization of spectral properties of the adjacency matrix. Top
left panel: spectrum of the centered adjacency matrix X. Top right panel:
spectrum of the adjacency matrix A with a zoom inset on the largest iso-
lated eigenvalues. Bottom panel: two dimensional embedding obtained
from the eigenvectors associated to the two largest eigenvalues of A
that correspond to the isolated ones shown in the inset. The color code
refers to the ground truth community label of the generative model.

else. The matrix X instead has zero mean, �nite variance and is a noise ma-
trix. If c→ ∞ – i.e. , if we are in a dense regime – the law of the eigenvalues
of X converges in distribution to the semi-circle Wigner law, bounded be-
tween −2α and 2α, as shown in the left panel of Figure 5.7. Now, we have
two matrices, E[A] and X of which we know the spectral properties, but
what can we say about their sum? Bauer-Fike theorem comes to help us
�nding an answer

Theorem5.2 (Bauer-Fike theorem for Hermitian matrices). Consider
a Hermitian matrix Ã and matrix X. Letting µ be an eigenvalue of
Ã + X, then there exists an eigenvalue λ of Ã so that

|λ− µ| ≤ ρ(X),

where ρ(·) denotes the spectral radius.



5.4 spectral clustering 69

In simple words, this theorem provides a bound to how much the eigen-
values of a perturbed matrix can di�er from those of its unperturbed version.
From this we know that the maximal distance between the eigenvalues of
A and the eigenvalues of E[A] is, at most, equal to ρ(X) = 2

√
c + on(

√
c)

with high probability. The spectrum of the matrix A will be composed by two
eigenvalues coming from E[A] that are close to the eigenvalues of E[A]. We
call these eigenvalues isolated. The remaining ones are the bulk eigenvalues
and follow the Wigner semi-circle law.

Isolated and bulk
eigenvalues

The eigenvectors associated with the isolated eigenvalues of A will be
strongly correlated with the eigenvectors of E[A]. These eigenvectors, how-
ever, are piece-wise contact and in particular, have the same value for all
nodes in the same community. Recall in particular the de�nition of σ. These
eigenvectors thus project each node to a point in a low dimensional space
that depends on the community structure, as shown in the lower panel of
Figure 5.7. It is very important to stress that all this argument holds if the
expected average degree c goes to in�nity. In this case, the isolated eigenval-
ues are of orderO(c) and the perturbation is of orderO(

√
c). Consequently,

the relative variation scales as O(c−1/2) and vanishes only for graphs that
are su�ciently dense. As we will discuss in the next paragraph, this is not
the case for sparse graphs.

Remark

The argument we made can be extended to an arbitrary number of
communities k and shows why in SC the embedding dimension is
often chosen to be equal to the number of classes. In fact, the number
of isolated informative eigenvalues equals the rank of E[A] that is
equal to k. Now, the fact that these eigenvalues are isolated – i.e. far
from all others – is fundamental for SC to work well. If this is not the
case, it means that the noise – represented by the bulk – “covers” the
information contained in the isolated eigenvalues and reconstruction
is not feasible.

In conclusion, the random matrix approach motivates SC by showing that
the low-rank mesoscale structure of a graph with communities can be re-
covered from few eigenvectors of a proper graph matrix representation. We
showed the argument �ow for k = 2 classes and a homogeneous degree dis-
tribution, but everything can be extended to a more general scenario. More-
over, the same approach can be used – even if it is mathematically more
challenging – to the use of other matrices, such as D − A, or D−1A, with
results that are qualitatively very similar.

5.4.4 spectral clustering in sparse graphs
As we mentioned in the previous section, the random matrix approach works
well when considering dense graphs, but the theoretical results do not hold
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Figure 5.8: Spectral behavior of graph matrix representations in the sparse

and dense regimes. We consider two graphs with two communities
with a large (panelsA and B) and a small (panelsC andD) average degree.
In the panels A and C we show the spectrum of the adjacency matrix A
and in panels B and D the spectrum of D−1/2 AD−1/2. In the case of
dense graphs (A and B), we highlighted (and zoomed) the two isolated
eigenvalues. For sparse graphs, these eigenvalues do not exist.

in the sparse regime in which the expected average degree is independent of
the graph size, i.e. c = On(1). Now, this is not only a theoretical limitation
as shown in Figure 5.8 in which we show that the well behaved spectral
behavior of A and D−1/2AD−1/2 in the dense regime is not replicated in the
sparse one. In the sparse regime that characterizes most real-world networks,
SC is known to be hard to deploy. Yet, we here provide three choices of M
– referring to Algorithm 5.1 – that recently proved to be very e�cient to
perform SC in sparse (but also dense) graphs.

The non-backtracking matrix

As we intuitively hinted in Chapter 2, the adjacency matrix naturally appears
when we perform the naïve mean �eld (NMF) approximation of a probability
distribution, while in Chapter 3 we showed that the non-backtracking ma-
trix naturally appears when using the belief propagation (BP) or cavity ap-
proximation. The NMF is appropriate on dense graphs and – intuitively – the
spectrum of A is well behave for these graphs and M = A is a good choice
for SC. This is not true for sparse graphs, as we brie�y showed in the previous
section. It can be shown that the non-backtracking matrix, instead, is a good
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Figure 5.9: Non-backtracking matrix spectrum in the complex plane. Scatter
plot of the real vs imaginary part of the eigenvalues of B for a graph
obained from the DCSBM model with k = 2 communities in the sparse
regime. The blue dots are the eigenvalues of the matrix, while the orange
lines are the theoretic prediction as per Theorem 5.1.

choice for M, given that BP is asymptotically exact on sparse graphs. Let us
�rst recall the de�nition of the non-backtracking matrix B ∈ [0, 1]2|E |×2|E |:

The
non-backtracking
matrix

B(ij),(kl) = δjk(1− δik). (5.10)

Each index of B corresponds to directed edge of G(V , E) even if the graph
is undirected. The entries are non zero when they correspond to two edges
that are adjacent but they are non-backtracking, i.e. B(ij),(ji) = 0. The spec-
trum of the matrix B can be divided, even in the sparse regime, into isolated
and bulk eigenvalues, as shown in Figure 5.9. Note that, since B is not Her-
mitian, its eigenvalues are de�ned on the complex plane. In particular, all
isolated eigenvalues are real, while the bulk one may have a non-zero imag-
inary part. We can state this result formally as per the following theorem.

Theorem 5.3. Let G(V , E)be a graph generated from the DCSBM of
De�nition 5.1. Denote with λp(·) the p-th largest eigenvalue of amatrix
and with Π = diag(π) ∈ Rk×k. Suppose that:

• CΠ1k = c1k where c = On(1) is the expected average degree

• all eigenvalues of CΠ are so that λp(CΠ)Φ > cΦ.

Then, the following relations are satis�ed with high probability:

∀ p ∈ [k], λp(B) = λp(CΠ)Φ + on(1)

∀ p > k, |λp(B)| ≤
√

cΦ + on(1).
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Let us take a moment to comment this theorem. Firstly, one can easily ver-
ify that the assumption CΠ1k = c1k implies that the expected average de-
gree c does not depend on the class, regardless of its size and of how they are
connected. Secondly, the bound shows that the position of the isolated eigen-
values of B only depend on CΠ hence on the expectation of A,8 while the
bulk eigenvalues are con�ned by a circle in the complex plane. This bound is
tight for n→ ∞ and c = On(1) so it works well also in the sparse regime. Fi-
nally, in the case of k = 2 communities of equal size, λ1(CΠ) = c = cin+cout

2
and λ2(CΠ) = c = cin−cout

2 . The eigenvalue λ2(B) is isolated if

cin − cout

2
Φ ≥

√
cΦ,

that implies

(c− cout)

√
Φ
c
≥ 1,

that is precisely the detectability threshold of the DCSBM as per Theorem 5.1.
Consequently, the non-backtracking matrix can be used to detect communi-
ties as soon as theoretically possible. To conclude, we must still solve a prob-
lem: the size of B is larger than n, hence we need to make a pre-processing
on the eigenvectors before to obtained an embedding X ∈ Rn×k. Recalling
the de�nition of T ∈ Rn×2|E given in Chapter 2, Ta,(ij) = δia Aij, for any
g ∈ R2|E | we let gin = Tg. By construction the vector gin ∈ Rn and it
can be used to de�ne a SC algorithm with the eigenvectors of B. Moreover,
still referring to Chapter 2, we recall that gin can be extracted by the �rst n
entries of the matrix Bp de�ned in Equation (3.11) that has size 2n× 2n and
it can thus be e�ciently computed on large graphs.(

A −In

D− In 0

)
︸ ︷︷ ︸

Bp

(
gin

gout

)
= γ

(
gin

gout

)
.

The Bethe-Hessian matrix

We now show that Bp and the vector gin are strongly related with an n× n
matrix called Bethe-Hessian9

Agin − gout = γgin

(D− In)gin = γgout

that leads to

Agin − 1
γ
(D− In)gin = γgin

8 As an exercise, try to show that ∀ p ∈ [k], λp(CΠ) = λp(E[A]).
9 This names comes from the fact that it can be interpreted as the Hessian matrix of the Bethe

free energy of an Ising model on G(V , E) at the paramagnetic point.
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Figure 5.10: Spectra of the Bethe-Hessian and Laplacianmatrices on a sparse

graph with communities. The top row shows the spectrum of H√B
for a graph with k = 2 communities generated from the DCSBM and
expected average degree equal to 5. In blue we evidence the two isolated
negative eigenvalues. For the same graph, the bottom plot shows the
histogram of the eigenvalues of the graph Laplacian L = D− A = H1.

and thus [
(γ2 − 1)In + D− γA

]︸ ︷︷ ︸
Hγ

gin = 0. (5.11)

The matrix Hγ is the Bethe-Hessian matrix and gin is an eigenvector of Hγ

is γ is an eigenvalue of B. Note that for Hγ=1 = D − A, the graph Lapla-
cian. Like the matrix L, the informative eigenvectors are associated with the
smallest eigenvalues of Hγ and it has been shown that for some choices of
γ, the algorithmic threshold of a SC algorithm based on Hγ coincides with
the theoretical detectability threshold of Theorem 5.1. A particularly inter-
esting choice is the one γ =

√
ρ(B) that corresponds to the radius of the

bulk of B, at least for random networks. For this choice SC provably achieves
the detectability threshold and, interestingly, only the isolated informative
eigenvalues of Hγ are negative, as shown in Figure 5.10. This provides us
with a method for estimating the number of communities that is based on
counting the number of negative eigenvalues of H√

ρ(B) and then use the
related eigenvectors to perform SC.
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Figure 5.11: Spectra of the regularized and non-regularized symmetric Lapla-

cian matrices on a sparse graph with communities. The top row
shows the spectrum of Lsym√

B
for a graph with k = 2 communities gen-

erated from the DCSBM and expected average degree equal to 5. In blue
we evidence the two isolated eigenvalues, while the red dash-dotted
line is located at ρ(B)−1/2, the expected right edge of the bulk. For the
same graph, the bottom plot shows the histogram of the eigenvalues of
the graph symmetrized Laplacian Lsym = D−1/2 AD−1/2 = Lsym

1 .

The regularized Laplacian matrix

As a �nal method, we still introduce one more matrix can can be used to
for SC in sparse graphs. Let Dτ = D + τ In, then, starting from the Bethe-
Hessian matrix[

(γ2 − 1)In + D− γA
]

gin = 0

Dγ2−1gin = γAgin

D1/2
γ2−1gin︸ ︷︷ ︸

y

= γD−1/2
γ2−1 Agin

y = γD−1/2
γ2−1 AD−1/2

γ2−1 y

Lsym
γ y =

1
γ

y,

where we introduce the normalized Laplacian matrix Lsym
γ = D−1/2

γ2−1 AD−1/2
γ2−1 .

Also in this case, the choice γ =
√

ρ(B) provides good performances for
spectral clustering and this is a valid choice for SC in sparse graphs. Fig-
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ure 5.11 compares the spectrum of Lsym√
ρ(B)

with the one of Lsym
1 that simply

corresponds to the classical symmetric Laplacian matrix.

5.4.5 final remarks on spectral clus-
tering

SC is a very relevant class of algorithms for CD and beyond. Several matri-
ces can be deployed to obtained meaningful representations of the graph
and this is at the same time a strength and a weakness of this approach.
There is not a unique matrix “to rule them all” and if a speci�c choice does
not produce good results, then one can look in the literature for di�erent
proposals, once the problem has been identi�ed. Another notable point is
the solid theoretical framework that can be used to characterize these algo-
rithms, making them particularly appealing. At the same time, these results
are typically derived for speci�c generative models (such as the DCSBM) and
may not generalize well to real-world graphs, for which additional caution
is needed. Finally, the computational complexity of spectral algorithms typ-
ically scales as O(|E |k2), the number of operations required to compute k
eigenvectors of a matrix with |E | non-zero entries. This complexity allows
one to use these algorithms on very large sparse graphs (due to the linear
scaling with |E |) but they are unsuited when approaching graphs with a
large number of communities.

5.5 conclusion
CD is a very important task in graph data mining but it is equally very chal-
lenging. This is primarily due to the fact that de�ning communities is hard
per se and then, given a de�nition of community it is often hard to �nd an
e�cient algorithm to detect them. Whenever approaching CD it is important
to remind that di�erent algorithms may look for substantially di�erent de�-
nitions of communities and may be suited on some graphs, but not on others
due to their limitations. In this chapter we gave a non-extensive overview of
some of the most signi�cant methods together with their limitations. This
brief introduction should raise in you a the need critical thinking when de-
ploying a CD algorithm so to identify its potential weaknesses and interpret
its results. This can be done, in practice, by deploying simultaneously several
CD algorithms and compare the results to obtain an complete overview of the
problem at hand. This is the approach that we will follow in the notebooks.



76 community detection

5.6 references
• Fortunato: Community detection in graphs

This is a fundamental (even if not so recent) review of CD algorithms. It
has very interesting insights to frame the problem on a broad picture

• Von Luxburg: A tutorial on spectral clustering
This is another very important review on spectral clustering, relating
it to optimization problems and with some useful interpretations of
SC.

• Moore: The computer science and physics of community detection: Land-
scapes, phase transitions, and hardness
This is am article with a rather pedagogical intent on inference in the
DCSBM and its relation with optimization problems with a statistical
physics perspective.
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