
6
GRAPH EMBEDDINGS

6.1 Graph embeddings . 77
6.2 Word2Vec . 78

6.2.1 Skip-Gram . 78
6.2.2 De�nition of a loss function 79
6.2.3 Training the model parameters 79

6.3 Node2Vec . 81
6.4 Conclusion . 82
6.5 References . 83

6.1 graph embeddings

Embeddings allow
one to more simply
represent graphs

As we have seen all along this course, graphs are a very powerful data rep-
resentation tool, capable of properly modeling complex interaction patterns
among the items of a dataset. However, this complexity makes any operation
on graphs intimately hard to even de�ne. Think for instance for instance of
the problem of de�ning the distance between two nodes, or two graphs or
a concept of continuity on graph: all these problem have been approached
and have solutions, but they are not unique and they need to be de�ned.
This is because graphs live in a high dimensional non-Euclidean space in
which most mathematical operations are not easily de�ned. Consequently,
a powerful method to deal with graph is to project them into an Euclidean
space. This operation is called embedding and Spectral clustering (SC) actu-
ally exploits an embedding that leverages on an appropriate graph matrix
representation. Now, there is not a unique way to embed graphs and the
embedding itself should be de�ned so that it preserves some relevant graph
properties. Nonetheless, once it is de�ned, we move to a space in which
several mathematical operations and algorithms (such as clustering) can be
deployed. We can formally de�ne a node embedding as follows

Node embeddings are at the basis of graph neural networks and allow one
to provide meaningful representations of complex objects. In the remainder
we describe the Node2Vec algorithm, that is one of the most popular al-
gorithms to obtain non-linear node embeddings. Note that this embedding
method can also be used to perform Community detection (CD) as well, by
performing clustering on the embedded space, equivalently to SC.

77

78 graph embeddings

Figure 6.1: Visual representation of the Skip-Gram algorithm. The central
word is highlighted in blue, while the context words are surrounded
by white boxes. In this example the window size is set equal to 2. On
the right we have all the pairs (central, context) that are obtained scan-
ning through the document that constitute the output of the Skip-Gram
algorithm. Picture taken from mccormickml.com/2016/04/19/word2vec-
tutorial-the-skip-gram-model/.

6.2 word2vec
TheNode2Vec algorithm builds on another (even more popular) algorithm,
called Word2Vec. This algorithm was introduced to embed the words ap-
pearing in a text and capturing the semantic similarity between them. For
instance, if i = milk, j = cow, k = gun, for the corresponding embedding
vectors, we expect that xT

i xj is large (milk is related to cow), while xT
i xk is

small. Let us now detail the method to obtain this desiderata.

6.2.1 skip-gram

De�ning context
words

If our goal is to provide similar representations to words that appear in sim-
ilar contexts, we must �rst de�ne what contexts are and we must do so in a
simple, content-agnostic way. To do so, the skip-gram algorithm takes an ar-
bitrary word of the text and considers the surrounding ones (within a certain
distance, called window size) as the context of that word. To give an increas-
ing weight to the words that are closer to the central one, one may draw for
each word the window size from a uniform distribution between 1 and a max-
imal value. The Skip-Gram algorithm then takes a text as input and a value
of the (maximal) window size and outputs a list of pairs (center, context)
that relate every words appearing in the text with the surrounding ones.
Figure 6.1 depicts the Skip-Gram procedure. If two words a, b are closely

6.2 word2vec 79

related – such as gold and crown –, one expects the pair (a, b) to appear sev-
eral times. However, thinking of the case of synonyms, one can expect them
to rarely appear in the same context, even if they have the same meaning.
The Skip-Gram algorithm, however, can properly deal also with this type of
similarity because synonyms will be surrounded by similar context words,
thus allowing one to recover their similarity.

6.2.2 definition of a loss function
Now that we have identi�ed context words, we want to de�ne a loss func-
tion of the embedding vectors that promoted the alignment of for the pairs
(central, context). Let i be an index running over all words in the text and
let π(i) be a function mapping word i to its position in the dictionary. Then,
letting Ci be the context of word i, we write

L = − ∑
i∈T

∑
j∈Ci

log σ
(

xT
π(i)xπ(j)

)
,

where T is the set of words appearing in the text, σ(·) is the sigmoid func-
tion1 and xa ∈ Rd is the embedding of the word a. Now, minimizing this loss
function we promote the alignment between central and context words. This
loss function actually has a trivial minimum that is obtained for xa = 1d for
all words a. This because it lack an adversarial term, like the one appearing
in the modularity cost function.

We add this term with a technique called negative sampling. For each word
i ∈ T , we sample a set of Ri of random words sampled from the text and
write the following loss function

Negative samplingL = − ∑
i∈T

[
∑
j∈Ci

log σ
(

xT
π(i)xπ(j)

)
+ ∑

j∈Ri

log σ
(
−xT

π(i)xπ(j)

)]
. (6.1)

This newly added term takes random pairs of words and gives a gain in the
loss function when they are misaligned, thus preventing the trivial minimum.
We now detail the strategy to optimize this cost function.

6.2.3 training the model parameters
The cost function is optimized with stochastic gradient descent and back-
propagation. This is a modi�ed version of gradient descent that is a method
to optimize a multivariate function. Given a random argument of the func-
tion to optimize, the idea is to move in the direction of the negative gradient
of the loss function, as depicted in Figure 6.2. This means

xnew = xold − η∇L(xold),

80 graph embeddings

Figure 6.2: Visualization of gradient descent. Picture taken from
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-
gradient-descent-algorithm-work-in-machine-learning/.

where η > 0 is the learning parameter. Now, computing the gradient may
be unpractical. To simplify things we let L = ∑i∈T Li and we update the
weight xi with the value of the gradient of Li (and not of the whole function
L) with respect to xi.

∂Li

∂xπ(i)a
= −

∑
j∈Ci

σ′
(

xT
π(i)xπ(j)

)
σ
(

xT
π(i)xπ(j)

) xπ(j)a − ∑
j∈Ri

σ′
(
−xT

π(i)xπ(j)

)
σ
(
−xT

π(i)xπ(j)

) xπ(j)a

 ,

(6.2)

where σ′ denotes the derivative of the sigmoid function. One can easily ver-
ify that the following relation holds

σ′(x) = σ(x)σ(−x).

Plugging these relations in Equation (6.2) we obtain

Stochastic gradient
descent

gπ(i)a =
∂L

∂xπ(i)a

= −
[

∑
j∈Ci

σ
(
−xT

π(i)xπ(j)

)
xπ(i)a + ∑

j∈Ri

σ
(

xT
π(i)xπ(j)

)
xπ(j)a

]
. (6.3)

By iteratively updating the weights, we �nd an approximation of a minimum
of the loss function L that provides us with a good representation of the
words. Algorithm 6.1 summarizes the Word2Vec algorithm.

1 The sigmoid function is σ(x) = (1 + e−x)−1. This is an increasing function, bounded be-
tween 0 and 1.

https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/
https://www.analyticsvidhya.com/blog/2020/10/how-does-the-gradient-descent-algorithm-work-in-machine-learning/

6.3 node2vec 81

Algorithm 6.1 : Word2Vec
Input : Text T with N words, dictionary with n words, embedding

dimension d, number of training epochs nepochs, learning
rate η, window size ω, number of negative samples m

Output : {xa}a∈[n] word embedding vectors in Rd

1 begin

2 Randomly intialize xa for all a ∈ [n] ;
3 for epoch = 1, . . . , nepochs do

4 for i ∈ T do

5 Draw w uniformy at random w← U (1, ω);
6 Get Ci for window width w with Skip-Gram;
7 GetRi selecting m random words from the text;
8 Compute gπ(i) as per Equation (6.2);
9 Update xπ(i) ← xπ(i) − ηgπ(i)

10 end

11 end

12 return {xa}a∈[n]
13 end

6.3 node2vec

Translating a graph
into a text

Let us now go back to graphs. TheNode2Vec algorithm uses theWord2Vec
algorithm to obtain a node embedding by �rst “translating” the graph into a
text and then embedding its words, corresponding to the graph nodes. The
text is obtained performing random walks on the graph. Random walks are
are paths made of sequences of adjacent nodes of the type (v1, v2, v3, . . . , vT),
where T here denotes the walk length. Neighboring nodes are in contact
and, in some sense, belong to the same context. Random walks are hence
use to probe the network structure and to extract information out of it. The
strategy is to de�ne random walks with memory, with the de�nition of two
parameters.

Suppose that the walker moves from i to j then it is at distance 1 from i. By
performing a further step there are three possibilities: moving to a node that
is at distance 2 from i, moving to a node that is at distance 1 from i or going
back to i itself. These three options are taken with di�erent probabilities that
are proportional to 1/p, 1/q and 1 respectively. The values of p and q are
an input of the algorithm. For p = q = 1 we have a simple random walk
without memory. The walking strategy is displayed in Figure 6.3. How to
choose the parameters p and q? The value of p determines the probability
of immediately returning to node the walker came from. Choosing large
values of p thus prevents the walker from bouncing back and forth between
the same nodes and instead it encourages faster exploration of the network.
This is exactly what happens with non-backtracking random walks and it is
particularly useful for sparse graphs in which, given that each node has very

82 graph embeddings

Figure 6.3: Visualization of the random walk strategy of Node2Vec. In the
last step the random walker moved from u to v1. In the next step it will
move: i) back to u with a probability proportional to 1/p; ii) to v3 or
v4 with a probability proportional to 1/q, since they are at a distance
2 from u; iii) to v2 with a probability proportional to 1 since v1 is at a
distance 1 from both u and v1.

few neighbors, it is likely to move back to the node of origin. The value of q
determines to what extent the random walker is inclined to visit nodes that
are further away from the original one. In particular, if q > 1 the walker is
more inclined to remain close to u. This kind of transition accounts for the
triangles that may be present in the network and attributes a higher chance
to visit nodes that are tightly connected among them. On the other hand,
small values of q will lead to avoid these paths and to more rapidly explore
the rest of the network. This has a direct impact on the type of information
stored in the embedding, as shown in Figure 6.4. This plot shows the result
of clustering based on the embedding obtained on the same graph for p = 1
and q = 0.5, 2, respectively. For q = 0.5 the algorithm is more prone to �nd
tightly connected communities, while for q = 2 it groups the node according
to structural equivalence.

6.4 conclusion
Graph embedding methods are very powerful to analyze and represent rela-
tional data. In this chapter we introduced the Node2Vec algorithm that is
one of the most in�uential methods developed in the past 10 years. Given
its dependence on Word2Vec, it is rather fast and its complexity scales
as O(|E |mdω). Moreover, note that, similarly to Node2Vec, a wealth of
algorithms have explored similar strategies to exploit the Word2Vec al-
gorithm and provide meaningful representations to complex mathematical
objects. You should then see this as a relevant example of a widely used
pipeline to de�ne representation learning algorithms.

6.5 references 83

Figure 6.4: Color coding according to the embedding obtained with two dif-

ferent values of q of the Node2Vec algorithm. The input graph
shows the co-appearances of characters in Les Misérables. For the top
plot q = 0.5, while for the bottom plot q = 2. Picture taken from Grover,
Leskovec, node2vec: Scalable Feature Learning for Networks.

6.5 references
• Mikolov, Sutskever, Chen, Corrado, Dean: Distributed representations
of words and phrases and their compositionality
This is the paper in which Word2Vec was introduced

• Grover, Leskovec: node2vec: Scalable feature learning for networks
This is the paper in which Node2Vec was introduced

	6 Graph embeddings
	6.1 Graph embeddings
	6.2 Word2Vec
	6.2.1 Skip-Gram
	6.2.2 Definition of a loss function
	6.2.3 Training the model parameters

	6.3 Node2Vec
	6.4 Conclusion
	6.5 References

