An embedding-based distance for temporal graphs

Lorenzo Dall'Amico

Ciro Cattuto

Alain Barrat

Problem statement

Temporal graphs

- Snapshot representation
- ullet A set of n nodes $\,\mathcal{V}\,$

 $i\in \mathcal{V}$

A set of temporal edges

Temporal graphs

- Snapshot representation
- ullet A set of n nodes $\,\mathcal{V}\,$
- A set of temporal edges

interaction timestamp

Temporal graphs can encode complex dynamic relations between entities

Question

Can we define a

distance to compare
temporal graphs?

Question

Can we define a

distance to compare
temporal graphs?

Only few related works:

- Bail et al (2023)
- Froese et al (2020),
- Zhanet al (2021)

• Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Capture topological and temporal structure of the interactions

• Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Capture topological and temporal structure of the interactions

connected

Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Capture topological and temporal structure of the interactions

when they get

connected

Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Capture topological and temporal structure of the interactions

• Usual distance properties

- 1. non negativity
- 2. separation axiom
- 3. symmetry
- 4. triangle inequality

Capture topological and temporal structure of the interactions

Can compare graphs with different observation times T

Matched graphs:

a **known** bijection between nodes

Matched graphs:

a **known** bijection between nodes

Also different number of nodes

Matched graphs:

a **known** bijection between nodes

Also different number of nodes

Two distances to handle both cases

Distance definition

input graphs

Transition probability matrix

$$P = rac{1}{T} \sum_{ au=1}^T L_ au L_{ au-1} \cdots L_2 L_1$$

- \bullet T: total number of snapshots
- L_{τ} : row-normalized instantaneous adjaceny matrix with self-loops

 P_{ij} : limiting probability to go from i to j with time-respecting random walks

Transition probability matrix

$$P = rac{1}{T} \sum_{ au=1}^{T} L_{ au} L_{ au-1} \cdots L_2 L_1$$
 tological and temporal network structure

Depends on structure

- \bullet T: total number of snapshots
- L_{τ} : row-normalized instantaneous adjaceny matrix with self-loops

 P_{ij} : limiting probability to go from i to j with time-respecting random walks

$$X \in \mathbb{R}^{n imes d}$$

embedding dimensions

$$P \in \mathbb{R}^{n imes n}$$

$$X \in \mathbb{R}^{n imes d}$$

embedding dimensions

$$P \in \mathbb{R}^{n imes n}$$

$$X \in \mathbb{R}^{n imes d}$$

Minimize

$$\mathcal{L}(X) = -\sum_{i,j \in \mathcal{V}} \left(P_{ij} - rac{1}{n}
ight) X_i^T X_j - \log \underbrace{\left(\sum_{k \in \mathcal{V}} e^{X_i^T X_k}
ight)}_{Z_i}$$

embedding dimensions

$$P \in \mathbb{R}^{n imes n}$$

$$X \in \mathbb{R}^{n imes d}$$

Minimize

$$\mathcal{L}(X) = -\sum_{i,j \in \mathcal{V}} \left(P_{ij} - rac{1}{n}
ight) X_i^T X_j - \log \underbrace{\left(\sum_{k \in \mathcal{V}} e^{X_i^T X_k}
ight)}_{Z_i}$$

EDRep algorithm

- Fast
- Low dependence on d
- No need to compute P explicitely

https://arxiv.org/abs/2303.17475

Minimize

 $\mathcal{L}(X) = -\sum_{i,j \in \mathcal{V}} \left(P_{ij} - rac{1}{n}
ight) X_i^T X_j - \log \Biggl(\sum_{l \in \mathcal{V}} e^{X_i^T X_k}\Biggr)$

$$X \in \mathbb{R}^{n imes d}$$

$$\overbrace{Z_i}$$

Matched graphs

$$d_{
m m} = \overbrace{\|X_1 X_1^T - X_2 X_2^T\|_{
m F}}^{
m expensive}$$

Entry-wise comparison of similarity between node pairs

Matched graphs

$$d_{ ext{m}} = \overbrace{\|X_1X_1^T - X_2X_2^T\|_{ ext{F}}}^{ ext{expensive}}$$
 $= \sqrt{\|X_1^TX_1\|_{ ext{F}} + \|X_2^TX_2\|_{ ext{F}} - 2\|X_1^TX_2\|_{ ext{F}}}^{ ext{cheap}}$

Entry-wise comparison of similarity between node pairs

$$d_{ ext{u}} = \left\|\lambda\left(rac{X_1^TX_1}{n_1}
ight) - \lambda\left(rac{X_2^TX_2}{n_2}
ight)
ight\|_2$$

$$\lambda \in \mathbb{R}^d$$
 : set of ordered eigenvalues

- Invariant under node permutations
- Independent of graph size

Evaluation

Method 1

Method 1

1. **Generate** several instances of static **random graphs** of varying size (SBM, ER, CM, GM)

- 1. **Generate** several instances of static random graphs of varying size (SBM, ER, CM, GM)
- 2. Assign each **edge** a **time series** from a real proximity graph (SocioPatterns)

- 1. **Generate** several instances of static random graphs of varying size (SBM, ER, CM, GM)
- 2. Assign each **edge** a **time series** from a real proximity graph (SocioPatterns)
- 3. Build a **distance matrix D** between each graph pair

- 1. **Generate** several instances of static random graphs of varying size (SBM, ER, CM, GM)
- 2. Assign each **edge** a **time series** from a real proximity graph (SocioPatterns)
- 3. Build a **distance matrix D** between each graph pair
- 4. Run unsupervised clustering on D

- Generate several instances of static random graphs of varying size (SBM, ER, CM, GM)
- 2. Assign each **edge** a **time series** from a real proximity graph (SocioPatterns)
- 3. Build a **distance matrix D** between each graph pair
- 4. Run unsupervised clustering on D
- 5. **Compare** inferred cluster label with known generative model

Reconstruction accuracy as function of embedding dimension

Randomizations of real graphs

Gauvin et al, Randomized
Reference Models for
Temporal Networks

Randomizations of real graphs

Randomization preserving Q

- Active snapshot: node activity state, # of edges at t
- *Time:* aggregated graph
- Sequence: structure of each snapshot
- Weighted degree: # of interactions per node

1. Consider a **empirical temporal graph**

- 1. Consider a **empirical temporal graph**
- 2. Generate **N randomizations** preserving Q

- 1. Consider a empirical temporal graph
- 2. Generate **N randomizations** preserving Q
- 3. For all **pairs of randomizations** build distance matrix **D** between 2N graphs

- 1. Consider a empirical temporal graph
- 2. Generate N randomizations preserving Q
- 3. For all **pairs of randomizations** build distance matrix **D** between 2N graphs
- 4. Run unsupervised clustering on D

- 1. Consider a empirical temporal graph
- 2. Generate N randomizations preserving Q
- 3. For all **pairs of randomizations** build distance matrix **D** between 2N graphs
- 4. Run unsupervised clustering on D
- 5. **Compare** inferred cluster label with randomization type

- 1. Consider a empirical temporal graph
- 2. Generate N randomizations preserving Q
- 3. For all **pairs of randomizations** build distance matrix **D** between 2N graphs
- 4. Run unsupervised clustering on D
- 5. **Compare** inferred cluster label with randomization type

Distinguishing randomizations means to be sensitive to Q

 d_{m}

Office						Conference								Baboons							
1.0	1.0	1.0	1.0	1.0	0.0		1.0	1.0	1.0	1.0	1.0	0.0		1.0	0.8	1.0	1.0	1.0	0.0		
1.0	1.0	1.0	1.0	0.0	1.0		1.0	1.0	1.0	1.0	0.0	1.0	_	1.0	1.0	1.0	1.0	0.0	1.0		
1.0	0.9	1.0	0.0	1.0	1.0		1.0	1.0	1.0	0.0	1.0	1.0		0.0	1.0	0.0	0.0	1.0	1.0		
1.0	0.3	0.0	1.0	1.0	1.0		1.0	1.0	0.0	1.0	1.0	1.0		0.0	1.0	0.0	0.0	1.0	1.0		
1.0	0.0	0.3	0.9	1.0	1.0	_	1.0	0.0	1.0	1.0	1.0	1.0	_	1.0	0.0	1.0	1.0	1.0	0.8		
0.0	1.0	1.0	1.0	1.0	1.0		0.0	1.0	1.0	1.0	1.0	1.0		0.0	1.0	0.0	0.0	1.0	1.0		
-	÷		_				-	_	-			ż		-		-	·	Ė	-		
Н	High school 1						High school 2							High school 3							
1.0	1.0	1.0	1.0	1.0	0.0		1.0	1.0	1.0	1.0	1.0	0.0		1.0	1.0	1.0	1.0	1.0	0.0		
1.0	1.0	1.0	1.0	0.0	1.0		1.0	1.0	1.0	1.0	0.0	1.0		1.0	1.0	1.0	1.0	0.0	1.0		
1.0	1.0	1.0	0.0	1.0	1.0		1.0	1.0	0.9	0.0	1.0	1.0		1.0	1.0	0.6	0.0	1.0	1.0		
1.0	1.0	0.0	1.0	1.0	1.0		1.0	1.0	0.0	0.9	1.0	1.0		1.0	1.0	0.0	0.6	1.0	1.0		
1.0	0.0	1.0	1.0	1.0	1.0		1.0	0.0	1.0	1.0	1.0	1.0		1.0	0.0	1.0	1.0	1.0	1.0		
0.0	1.0	1.0	1.0	1.0	1.0		0.0	1.0	1.0	1.0	1.0	1.0		0.0	1.0	1.0	1.0	1.0	1.0		
Hospital							Households								Primary school						
	0.9	0S 1.0	1.0				1.0	1.0	US€ 1.0	1.0	0.8			1.0	1.0	ary	1.0	1.0	0.0		
1.0	-			1.0	0.0		1.0	1.0			0.0	0.0		1.0							
1.0	1.0	1.0	1.0	0.0	1.0				1.0	1.0					1.0	1.0	1.0	0.0	1.0		
1.0	1.0	0.9	0.0	1.0	1.0		1.0	1.0	0.6	0.0	1.0	1.0	-	1.0	1.0	0.2	0.0	1.0	1.0		
1.0	1.0	0.0	0.9	1.0	1.0	-	1.0	1.0	0.0	0.6	1.0	1.0		1.0	1.0	0.0	0.2	1.0	1.0		
1.0	0.0	1.0	1.0	1.0	0.9	-	1.0	0.0	1.0	1.0	1.0	1.0	-	1.0	0.0	1.0	1.0	1.0	1.0		
0.0	1.0	1.0	1.0	1.0	1.0	-	0.0	1.0	1.0	1.0	1.0	1.0		0.0	1.0	1.0	1.0	1.0	1.0		
Active snapshot	Weighted degree	Random	Random delta	Sednence	Time		Active snapshot	Weighted degree	Random	Random delta	Seguence	Time		Active snapshot	Weighted degree	Random	Random delta	Sequence	Time		

We can
distinguish all
shufflings pairs
for almost all
graphs

Conclusion

Contribution

- We introduce a **distance** between temporal graphs
- Both **matched** and **unmacthed** cases
- Disciminate (synthetic, empirical) temporal networks with complex topological and temporal structures

Contribution

- We introduce a **distance** between temporal graphs
- Both **matched** and **unmacthed** cases
- Disciminate (synthetic, empirical) temporal networks with complex topological and temporal structures

Outlook

- Data analysis
- Evaluate generative model

THANK YOU

Mail: lorenzo.dallamico@isi.i

Website: lorenzodallamico.github.io

EPFL COVID-19 Real Time
Epidemiology I-DAIR
Pathfinder

European Union's Horizon 2020 No. 101016233

arXiv:2401.12843