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Problem statement
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Temporal graphs

® Snapshot representation
e Asetofnnodes V
e A set of temporal edges

(2,7,1)
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timestamp

second node

firstnode  j €V Temporal graphs can encode complex

1€V dynamic relations between entities
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Only few related works:

® Bail et al (2023)
® Froese et al (2020),
® Zhanet al (2021)
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Desiderata

1. non negativity

2. separation axiom
3. symmetry

4, triangle inequality

e Usual distance properties

e Capture topological and temporal structure of the interactions

/ \ when they get

connected
how the nodes are
connected how they are intertwined

e Can compare graphs with different observation times T
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A
Matched graphs: \./

a known bijection between nodes

Unmatched graphs:
Also different number of nodes

Two distances to handle
both cases



Distance definition
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Transition probability matrix

T
1
P=_ 1Ly LsL
TT:1 1 2471

e T': total number of snapshots
e /.. row-normalized instantaneous adjaceny
matrix with self-loops

P; j  limiting probability to go from i to j with
time-respecting random walks



Transition probability matrix

Depends on
tological and

1 T
P = T E : Ly oy Loly temporal network
T=1

structure

e T': total number of snapshots
e /... row-normalized instantaneous adjaceny
matrix with self-loops

P; j  limiting probability to go from i to j with
time-respecting random walks



Embedding
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Embedd”']g embedding

, dimensions
EDRep algorithm A
® Fast LI
® |ow dependence ond > nodes

® No need to compute P
explicitely

X e R™

https://arxiv.org/abs/2303.17475
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Matched graphs

expensive
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between node pairs



Matched graphs

expensive
N\

dw = | X1 X7 — Xo X5 ||

— IXT X1 [k + | XF Xolr — 2] XT Xa|lr

V

cheap

Entry-wise comparison of similarity
between node pairs



Unmatched graphs

PN xXTx, L XTI X,
N (a1 4%)

A E Rd . set of ordered eigenvalues

2

e /nvariant under node permutations
e /ndependent of graph size
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. Generate several instances of static

random graphs of varying size (SBM,
ER, CM, GM)

. Assign each edge a time series from a

real proximity graph (SocioPatterns)

. Build a distance matrix D between

each graph pair

. Run unsupervised clustering on D
. Compare inferred cluster label with

known generative model
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Reconstruction accuracy as function of embedding dimension



Method 2

Randomizations of real graphs
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M et h O d 2 Gauvin et al, Randomized

Reference Models for

Randomizations of real graphs Temporal Networks

_ @ N
/ L Randomization

preserving Q

\‘/ Random: # temporal edges

(

® Random delta: interaction duration distribution

® Active snapshot: node activity state, # of edges at t
® Time: aggregated graph

® Sequence: structure of each snapshot

® |WVeighted degree: # of interactions per node

Q preserved


https://epubs.siam.org/doi/abs/10.1137/19M1242252
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. Generate N randomizations preserving Q
. For all pairs of randomizations build distance

matrix D between 2N graphs

. Run unsupervised clustering on D
. Compare inferred cluster label with

randomization type
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Method 2

. Consider a empirical temporal graph
. Generate N randomizations preserving Q
. For all pairs of randomizations build distance

matrix D between 2N graphs

. Run unsupervised clustering on D
. Compare inferred cluster label with

randomization type

Distinguishing randomizations
means to be sensitive to Q
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We can
distinguish all
shufflings pairs
for almost all
graphs
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Contribution

e We introduce a distance between temporal graphs
¢ Both matched and unmacthed cases

® Disciminate (synthetic, empirical) temporal networks
with complex topological and temporal structures

Outlook

® Data analysis
® Evaluate generative model
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