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Sparsity

Real graphs are typically sparse

Dataset Size Average degree

Dolphins 62 5

Polbooks 105 8,4

Football 115 10,7

Polblogs 1.222 27,4

Facebook 4.039 43,7

GNutella P2P 6.301 6,6

Astrophysics 18.775 21,1

Condensed matter 23.133 8,1

Email Enron 36.692 10

Source : Stanford Large Network Dataset Collection
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Heterogeneity

Real graphs typically have a broad degree distribution

Figure: Degree distribution for various networks. Source: Barabasi, Emergence of

Scaling in Random Networks, Science 1999
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• k classes of equal size

• C =


cin cout cout . . .

cout cin cout . . .
...

...
. . .

...

. . . cout cout cin



Detection in polynomial time if

α = f (cin, cout,Φ, k) > αc

Typical choices of M do not achieve the αc threshold
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The Bethe-Hessian

Ising Hamiltonian on G for s ∈ {−1, 1}n

H(s) = −sTAs = −
∑

(ij)∈E

si sj

Low energetic configurations with all spins in the same class are aligned

Free energy for m ∈ Rn

F (m) = U(m)︸ ︷︷ ︸
internal energy

−T S(m)︸ ︷︷ ︸
entropy

The minima of F (m) are informative
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• Ising Hamiltonian H(s)

• Temperature-like parameter r

• Bethe approximation

• Hessian of the Bethe free energy

Definition: Bethe-Hessian family of matrices

Hr = (r2 − 1)In + D − rA, r ≥ 1
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ρ(B) (Saade 2014)
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• Clustering in k-dimensions

Return: ` ∈ {1, . . . , k}n, label assigment
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Figure: Performance vs competing methods on DCSBM synthetic graphs.

n = 50.000, c = 5.
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Real graphs

Dataset n c k Hζp A H√
cΦ

B Lrw Lsymτ

Karate 34 4.6 2 0.37 0.37 0.37 0.37 0.36 0.37

Dolphins 62 5 2 0.38 0.21 0.34 0.22 0.38 0.38

Polbooks 105 8.4 3 0.50 0.47 0.50 0.45 0.50 0.50

Football 115 10.7 12 0.60 0.60 0.60 0.60 0.60 0.60

Mail 1133 9.6 21 0.52 0.32 0.40 0.37 0.48 0.52

Polblogs 1222 27,4 2 0.43 0.25 0.27 0.23 0.00 0.43

Tv 3892 8.9 41 0.85 0.60 0.56 0.55 0.55 0.80

Facebook 4039 43.7 55 0.76 0.42 0.49 0.48 0.70 0.58

GrQc 4158 6.5 29 0.80 0.52 0.51 0.51 0.34 0.80

Power grid 4941 2.7 25 0.92 0.18 0.33 0.31 0.92 0.85

Politicians 5908 14.1 62 0.82 0.48 0.54 0.51 0.74 0.74

GNutella P2P 6299 6.6 4 0.40 0.20 0.14 0.14 0.00 0.35

Wikipedia 7066 28.3 22 0.27 0.14 0.18 0.16 0.34 0.27

HepPh 11204 21.0 60 0.57 0.46 0.42 0.42 0.27 0.52

Vip 11565 11.6 53 0.62 0.28 0.32 0.32 0.16 0.54

Table: Modularity (no ground truth) comparison on real networks
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Hr = (r2 − 1)In + D − rA

D − A Hζp H√
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Lτ = D−1/2
τ AD−1/2

τ , Dτ = D + τ In

(Dζ2
p−1 − ζpA)xp = 0 =⇒ D−1

ζ2
p−1

Axp = 1
ζp

xp

D−1/2AD−1/2 Lζ2
p−1 Lc Lρ(B)−1

Trivial Optimal Qin13 Worst case
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Erdős-Rényi random graph G, ∀ (ij) ∈ E , ωij ∼ P0(|ωij |)eβNωij

β̂N = max
β
{β : λ↑1(Hβ) = 0}

β̂N = βN + on(1)

Cost-efficient data clustering

42 / 43



Introduction
Graph clustering

Community
detection

Objectives

Physics inspired
methods
Bethe-Hessian

Non-backtracking

Challenges

Main contribution
Optimal
Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Conclusion

Extensions: relating Nishimori to Bethe
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Publications

Journal papers

• LD, Romain Couillet Nicolas Tremblay: Nishimori meets Bethe: a spectral method for node

classification in sparse weighted graphs, in Journal of statistichal mechanics

• LD, Romain Couillet, Nicolas Tremblay: A unified framework for spectral clustering in sparse graphs,

in JMLR

Conference papers

• LD, Romain Couillet Nicolas Tremblay: Community detection in sparse time-evolving graphs with a

dynamical Bethe-Hessian, in NeurIPS 2020

• LD, Romain Couillet, Nicolas Tremblay: Optimal Laplacian regularization for sparse spectral

community detection, in ICASSP 2020

• LD, Romain Couillet, Nicolas Tremblay: Classification spectrale par la laplacienne déformée dans des

graphes réalistes, in GRETSI 2019

• LD, Romain Couillet, Nicolas Tremblay: Revisiting the Bethe-Hessian: improved community detection

in sparse heterogeneous graphs, in NeurIPS 2019

• LD, Romain Couillet: Community Detection in Sparse Realistic Graphs: Improving the Bethe Hessian,

in ICASSP 2019
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