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Real graphs

Main contribution

Performance

Dataset H n [ c [ k H He, [ A [ H /= [ B [ [ [ Lsym ]
Karate 34 46 2 037 | 0.37 0.37 037 | 036 0.37
Dolphins 62 5 2 0.38 | 021 0.34 022 | 0.38 0.38
Polbooks 105 8.4 3 0.50 | 047 0.50 0.45 | 0.50 0.50
Football 115 107 | 12 0.60 | 0.60 0.60 0.60 | 0.60 0.60
Mail 1133 96 | 21 0.52 | 032 0.40 037 | 048 0.52
Polblogs 1222 | 274 | 2 0.43 | 025 0.27 0.23 | 0.00 0.43
Tv 3892 89 | 41 0.85 | 0.60 0.56 055 | 0.55 0.80
Facebook 4039 | 437 | 55 0.76 | 042 0.49 0.48 | 0.70 0.58
GrQc 4158 65 | 29 0.80 | 052 0.51 051 | 0.34 0.80
Power grid 4941 27 | 25 092 | 018 0.33 031 | 0.92 0.85
Politicians 5908 141 | 62 0.82 | 048 0.54 051 | 0.74 0.74
GNutella P2P 6299 6.6 4 0.40 | 020 0.14 0.14 | 0.00 0.35
Wikipedia 7066 | 283 | 22 027 | 014 0.18 016 | 0.34 0.27
HepPh 11204 | 21.0 | 60 0.57 | 0.46 0.42 042 | 027 0.52
Vip 11565 | 11.6 | 53 0.62 | 028 0.32 032 | 0.16 0.54

Table: Modularity (no ground truth) comparison on real networks
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i i

e Suppose the labels are correlated across time P(¢
Conclusion e Infer the labels as a function of t, exploiting their time correlation 4,
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