Spectral methods for graph clustering Ph.D. defence

Lorenzo Dall'Amico GIPSA lab, Grenoble INP

October 12, 2021

Supervisors: Romain Couillet Nicolas Tremblay

Contents

INTRODUCTION

- Graph clustering
- Community detection
- Objectives

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Unsupervised methods for data categorization

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

WOF WOF MEOW MEOW WOF WOF (MEOW) (MEOW)

Unsupervised methods for data **categorization**

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Unsupervised methods for data categorization

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Feature extraction and clustering paradigm

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Feature extraction and clustering paradigm

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Feature extraction and clustering paradigm

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Feature extraction and clustering paradigm

The relevant features define the concept of categories

Graph clustering

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

A graph representation for pairwise "affinity"

Introduction

Graph clustering

```
Community
detection
Objectives
```

```
Physics inspired methods
```

```
Bethe-Hessian
Non-backtracking
Challenges
```

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
\mathcal{G}(\mathcal{V},\mathcal{E}), is a graph with |\mathcal{V}| = n nodes.
```

DEFINITION: adjacency matrix

$$\forall 1 \leq i < j \leq n, \quad A_{ij} = \mathbb{1}_{(ij) \in \mathcal{E}}$$

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

$\mathcal{G}(\mathcal{V},\mathcal{E})$, is a graph with $|\mathcal{V}| = n$ nodes.

DEFINITION: adjacency matrix

$$\forall 1 \leq i < j \leq n, \quad A_{ij} = \mathbb{1}_{(ij) \in \mathcal{E}}$$

DEFINITION: diagonal degree matrix

$$\forall \ 1 \leq i \leq j \leq n, \quad D_{ij} = \delta_{ij} \sum_{k \in \mathcal{V}} A_{ij}$$

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

 $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

 $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

	0	1	0	0	1
	1	0	1	0	1
A =	0	1	0	1	0
	0	0	1	0	1
	$\setminus 1$	1	0	1	0)

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

 $D = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{pmatrix}$

Spectral clustering

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Graph \rightarrow **Matrix** \rightarrow **Eigenvectors embedding**

Spectral clustering

Introduction

Graph clustering

Community detection Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

$\textbf{Graph} \rightarrow \textbf{Matrix} \rightarrow \textbf{Eigenvectors embedding}$

Typical spectral clustering algorithm

Input: $\mathcal{G}(\mathcal{V}, \mathcal{E}), k$

- $M \in \mathbb{R}^{n \times n}$: graph matrix representation
- k eigenvectors of M in the columns of $X \in \mathbb{R}^{n \times k}$
- Clustering in k-dimensions (k-means)

Output: $\ell \in \{1, \ldots, k\}^n$, labelling vector

3 years in 40 minutes...

Conclusion

A unified framework

Community detection: problem position

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Problem: given $\mathcal{G}(\mathcal{V}, \mathcal{E})$, find a partition of \mathcal{V} to recover the community labels

Community detection: problem position

Introduction

Graph clustering

Community detection

Objectives

methods

Rethe-Hessian Non-backtracking Challenges

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework **Problem**: given $\mathcal{G}(\mathcal{V}, \mathcal{E})$, find a partition of \mathcal{V} to recover the community labels

INPUT

Figure: The dolphin network (Lusseau 2003)

Community detection: problem position

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework **Problem**: given $\mathcal{G}(\mathcal{V}, \mathcal{E})$, find a partition of \mathcal{V} to recover the community labels

Figure: The dolphin network (Lusseau 2003)

Spectral clustering for community detection

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Recall: compute k eigenvectors of M to embed the nodes in \mathbb{R}^k

Spectral clustering for community detection

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework **Recall**: compute k eigenvectors of M to embed the nodes in \mathbb{R}^k

Popular choices for *M* in community detection are

- A, adjacency matrix
- D A, graph Laplacian matrix
- $D^{-1}A$, $D^{-1/2}AD^{-1/2}$, normalized Laplacian matrices

Spectral clustering for community detection

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework **Recall**: compute k eigenvectors of M to embed the nodes in \mathbb{R}^k

Popular choices for *M* in community detection are

- A, adjacency matrix
- D A, graph Laplacian matrix
- $D^{-1}A$, $D^{-1/2}AD^{-1/2}$, normalized Laplacian matrices

Poor performances on sparse and heterogeneous graphs

Sparsity

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Real graphs are typically $\ensuremath{\textbf{sparse}}$

Dataset	Size	Average degree	
Dolphins	62	5	
Polbooks	105	8,4	
Football	115	10,7	
Polblogs	1.222	27,4	
Facebook	4.039	43,7	
GNutella P2P	6.301	6,6	
Astrophysics	18.775	21,1	
Condensed matter	23.133	8,1	
Email Enron	36.692	10	

Source : Stanford Large Network Dataset Collection

Sparsity

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Real graphs are typically $\ensuremath{\textbf{sparse}}$

Dataset	Size	Average degree	
Dolphins	62	5	
Polbooks	105	8,4	
Football	115	10,7	
Polblogs	1.222	27,4	
Facebook	4.039	43,7	
GNutella P2P	6.301	6,6	
Astrophysics	18.775	21,1	
Condensed matter	23.133	8,1	
Email Enron	36.692	10	

Source : Stanford Large Network Dataset Collection

Spectral clustering in sparse graphs

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Spectral clustering in sparse graphs

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Heterogeneity

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Real graphs typically have a broad degree distribution

Figure: Degree distribution for various networks. Source: Barabasi, *Emergence of Scaling in Random Networks*, Science 1999

Spectral clustering in heterogeneous graphs

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Figure: Spectral node embedding. Left: homogeneous degree distribution. Right: power law degree distribution

Introduction Graph clustering Community detection Objectives			
Physics inspired methods Bethe-Hessian Non-backtracking Challenges			
Main contribution Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework			

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

$$\mathbb{P}(A_{ij}=1)=\frac{\theta_i\theta_j}{n}\cdot\frac{C_{\ell_i\ell_j}}{n}$$

$$\begin{aligned} \theta \in \mathbb{R}^{n}: \text{ intrinsic "probability" of connection} \\ \circ \quad \frac{1}{n} \sum_{i \in \mathcal{V}} \theta_{i} = 1 \\ \circ \quad \frac{1}{n} \sum_{i \in \mathcal{V}} \theta_{i}^{2} = \Phi = O_{n}(1): \text{ broadness of the degree distribution} \end{aligned}$$

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

$$\mathbb{P}(A_{ij}=1)=\theta_i\theta_j\cdot\frac{C_{\ell_i\ell_j}}{n}$$

•
$$\theta \in \mathbb{R}^n$$
: intrinsic "probability" of connection
• $\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i = 1$
• $\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i^2 = \Phi = O_n(1)$: broadness of the degree distribution

- $C \in R^{k \times k}$: class affinity matrix
- $\boldsymbol{\ell} \in \{1, \dots, k\}^n$: label vector

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm

Performance

A unified framework

$$\mathbb{P}(A_{ij}=1)=\underbrace{\theta_i\theta_j}_{n}\cdot \underbrace{\frac{C_{\ell_i\ell_j}}{n}}_{n}$$

• $heta \in \mathbb{R}^n$: intrinsic "probability" of connection

•
$$\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i = 1$$

• $\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i^2 = \Phi = O_n(1)$: broadness of the degree distribution

- $C \in R^{k \times k}$: class affinity matrix
- $\ell \in \{1, \ldots, k\}^n$: label vector
- $\mathbb{E}[d_i] = O_n(1)$
The Degree-corrected stochastic block model (DCSBM)

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm

Performance

A unified framework

$$\mathbb{P}(A_{ij}=1)=\underbrace{\theta_i\theta_j}\cdot \underbrace{\frac{C_{\ell_i\ell_j}}{n}}$$

• $heta \in \mathbb{R}^n$: intrinsic "probability" of connection

•
$$\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i = 1$$

• $\frac{1}{n} \sum_{i \in \mathcal{V}} \theta_i^2 = \Phi = O_n(1)$: broadness of the degree distribution

- $C \in R^{k \times k}$: class affinity matrix
- $\ell \in \{1, \ldots, k\}^n$: label vector
- $\mathbb{E}[d_i] = O_n(1)$

Objective: infer ℓ from A

Introduction Graph clustering Community detection Objectives			
Physics inspired methods Bethe-Hessian Non-backtracking Challenges			
Main contribution Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework			

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
• k classes of equal size

• C = \begin{pmatrix} c_{\text{in}} & c_{\text{out}} & c_{\text{out}} & \dots \\ c_{\text{out}} & c_{\text{in}} & c_{\text{out}} & \dots \\ \vdots & \vdots & \ddots & \vdots \\ \dots & c_{\text{out}} & c_{\text{out}} & c_{\text{in}} \end{pmatrix}
```

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
• k classes of equal size

• C = \begin{pmatrix} C_{in} & C_{out} & C_{out} & \cdots \\ C_{out} & C_{in} & C_{out} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & C_{out} & C_{out} & C_{in} \end{pmatrix}
```

Detection in polynomial time if $\alpha = f(c_{in}, c_{out}, \Phi, k) > \alpha_c$

Introduction

Graph clustering

Community detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
• k classes of equal size

• C = \begin{pmatrix} C_{\text{in}} & C_{\text{out}} & C_{\text{out}} & \cdots \\ C_{\text{out}} & C_{\text{in}} & C_{\text{out}} & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & C_{\text{out}} & C_{\text{out}} & C_{\text{in}} \end{pmatrix}
```

Detection in polynomial time if $\alpha = f(c_{in}, c_{out}, \Phi, k) > \alpha_c$

Typical choices of ${\it M}$ do not achieve the $\alpha_{\rm c}$ threshold

Introduction

Graph clustering Community detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Define a new spectral clustering algorithm

Introduction

Graph clustering Community detection

Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Define a new spectral clustering algorithm

• Inspired by the DCSBM but applicable to **any** input graph

Introduction

Graph clustering Community detection

Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Define a new spectral clustering algorithm

- Inspired by the DCSBM but applicable to any input graph
- Dealing with sparsity and degree heterogeneity

Introduction

Graph clustering Community detection

Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Define a new spectral clustering algorithm

- Inspired by the DCSBM but applicable to any input graph
- Dealing with sparsity and degree heterogeneity
- Reaching the detectability threshold on sparse DCSBM graphs

Contents

PHYSICS INSPIRED METHODS

- The Bethe-Hessian
- The non-backtracking
- Challenges

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

sing Hamiltonian on
$${\mathcal G}$$
 for ${m s} \in \{-1,1\}^n$

$$\mathcal{H}(\boldsymbol{s}) = -\boldsymbol{s}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{s} = -\sum_{(ij)\in\mathcal{E}} s_i s_j$$

Introduction

Graph clustering

- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

sing Hamiltonian on
$$\mathcal G$$
 for $oldsymbol{s} \in \{-1,1\}^n$

$$\mathcal{H}(\boldsymbol{s}) = -\boldsymbol{s}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{s} = -\sum_{(ij)\in\mathcal{E}} s_i s_j$$

Low energetic configurations with all spins in the same class are aligned

ion

Introduction

Graph clustering

Community

detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm

Performance

A unified framework

Ising Hamiltonian on ${\mathcal G}$ for ${\pmb s} \in \{-1,1\}^n$

$$\mathcal{H}(\boldsymbol{s}) = -\boldsymbol{s}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{s} = -\sum_{(ij)\in\mathcal{E}} s_i s_j$$

Low energetic configurations with all spins in the same class are aligned

Free energy for $\boldsymbol{m} \in \mathbb{R}^n$

$$F(\boldsymbol{m}) = \underbrace{U(\boldsymbol{m})}_{\text{internal energy}} - \underbrace{T}_{\text{entropy}} \underbrace{S(\boldsymbol{m})}_{\text{entropy}}$$

The minima of $F(\mathbf{m})$ are informative

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

• Ising Hamiltonian $\mathcal{H}(\boldsymbol{s})$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

• Ising Hamiltonian $\mathcal{H}(\boldsymbol{s})$

• Temperature-like parameter r

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

• Ising Hamiltonian $\mathcal{H}(\boldsymbol{s})$

- Temperature-like parameter r
- Bethe approximation

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

- Ising Hamiltonian $\mathcal{H}(\boldsymbol{s})$
- Temperature-like parameter r
- Bethe approximation
- Hessian of the Bethe free energy

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

- Ising Hamiltonian $\mathcal{H}(s)$
- Temperature-like parameter r
- Bethe approximation
- Hessian of the Bethe free energy

$\label{eq:definition} Definition: \mbox{ Bethe-Hessian family of matrices}$

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A, \quad \mathbf{r} \ge 1$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Figure: Spectrum of H_r for r fixed and k = 2

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

DEFINITION: non-backtracking matrix

$$orall \ (ij), (kl) \in \mathcal{E}_{ ext{d}}, \quad B_{(ij), (kl)} = \delta_{jk} (1 - \delta_{il})$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

$D{\tt EFINITION:} \ {\tt non-backtracking} \ {\tt matrix}$

$$orall \ (ij), (kl) \in \mathcal{E}_{ ext{d}}, \quad B_{(ij), (kl)} = \delta_{jk} (1 - \delta_{il})$$

3

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

DEFINITION: non-backtracking matrix

$$orall \ (ij), (kl) \in \mathcal{E}_{ ext{d}}, \quad B_{(ij), (kl)} = \delta_{jk} (1 - \delta_{il})$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

3 1

$\label{eq:definition: non-backtracking matrix} Definition: non-backtracking matrix$

$$orall \ (ij), (kl) \in \mathcal{E}_{ ext{d}}, \quad B_{(ij), (kl)} = \delta_{jk} (1 - \delta_{il})$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

$\label{eq:definition} Definition: \ \text{non-backtracking matrix}$

$$orall \ (ij), (kl) \in \mathcal{E}_{ ext{d}}, \quad B_{(ij), (kl)} = \delta_{jk} (1 - \delta_{il})$$

Spectrum of *B* (DCSBM)

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

• For $\alpha > \alpha_{
m c}$, k real isolated eigenvalues

• All complex eigenvalues satisfy $|\lambda_i(B)| \leq \sqrt{
ho(B)} + o_n(1)$

Figure: Spectrum of *B* for k = 2, sparse DCSBM

Spectrum of H_r (DCSBM)

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

For $r = \sqrt{\rho(B)}$ (Saade 2014)

- If $\alpha > \alpha_{\rm c}$, k isolated negative eigenvalues
- All bulk eigenvalues are positive

Figure: Spectrum of $H_{\sqrt{\rho(B)}}$ for k = 2, sparse DCSBM

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
Both H_{\sqrt{\rho(B)}} and B
```

 \checkmark achieve detectability when $\alpha > \alpha_{\rm c}$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
Both H_{\sqrt{\rho(B)}} and B
```

- \checkmark achieve detectability when $\alpha > \alpha_{\rm c}$
- X do not deal with heterogeneity

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
Both H_{\sqrt{\rho(B)}} and B
```

- \checkmark achieve detectability when $\alpha > \alpha_{\rm c}$
- X do not deal with heterogeneity

$\mathsf{Q1}$: deal with sparsity and heterogeneity at once

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
Both H_{\sqrt{\rho(B)}} and B
```

- \checkmark achieve detectability when $\alpha > \alpha_{\rm c}$
- **X** do not deal with **heterogeneity**

 $\mathsf{Q1}$: deal with $\mathbf{sparsity}$ and $\mathbf{heterogeneity}$ at once

Q2 : find the optimal $r \neq \sqrt{\rho(B)}$ for H_r

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

```
Both H_{\sqrt{\rho(B)}} and B
```

- \checkmark achieve detectability when $\alpha > \alpha_{\rm c}$
- X do not deal with heterogeneity

- $\mathsf{Q1}$: deal with sparsity and heterogeneity at once
- Q2 : find the optimal $r \neq \sqrt{\rho(B)}$ for H_r
- Q3 : efficiently estimate the optimal r

Contents

MAIN CONTRIBUTION

- Optimal Bethe-Hessian
- DCSBM
- Algorithm
- Performance
- A unified framework

Introduction

- Graph clustering Community
- Community
- detection
- Objectives
- Physics inspired methods
- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

Contribution: definition of optimal value of r

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A$$

Introduction

- Graph clustering Community detection
- Objectives
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

Contribution: definition of optimal value of r

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A$$

Let $\lambda_p^{\uparrow}(M)$ be the *p*-th smallest eigenvalue of M

Introduction

- Graph clustering Community detection
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Contribution: definition of optimal value of r

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A$$

Let $\lambda_p^{\uparrow}(M)$ be the *p*-th smallest eigenvalue of *M*

Definition: ζ_p

For each connected component of $\ensuremath{\mathcal{G}}$

$$\zeta_{p} = \min_{r \geq 1} \{r : \lambda_{p}^{\uparrow}(H_{r}) = 0\}$$

Introduction

- Graph clustering Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Contribution: definition of optimal value of r

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A$$

Let $\lambda_p^{\uparrow}(M)$ be the *p*-th smallest eigenvalue of *M*

Definition: ζ_p

For each connected component of $\ensuremath{\mathcal{G}}$

$$\zeta_p = \min_{r \ge 1} \{ r : \lambda_p^{\uparrow}(H_r) = 0 \}$$

 \bullet Well defined for any ${\cal G}$
Introduction

- Graph clustering Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

Contribution: definition of optimal value of r

$$H_{\mathbf{r}} = (\mathbf{r}^2 - 1)I_n + D - \mathbf{r}A$$

Let $\lambda_p^{\uparrow}(M)$ be the *p*-th smallest eigenvalue of M

Definition: ζ_{p}

For each connected component of $\ensuremath{\mathcal{G}}$

$$\zeta_{p} = \min_{r \geq 1} \{r : \lambda_{p}^{\uparrow}(H_{r}) = 0\}$$

- Well defined for any ${\cal G}$
- A "property" of the graph

Introduction

- Graph clustering Community detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian

- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

$H_r = (r^2 - 1)I_n + D - rA$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

$$H_r = (r^2 - 1)I_n + D - rA$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

$$\det(B - rI_{|\mathcal{E}_{\mathrm{d}}|}) \propto \det(H_r)$$

The ζ_p 's are eigenvalues of B

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

$$\det(B - rI_{|\mathcal{E}_{\mathrm{d}}|}) \propto \det(H_r)$$

The ζ_p 's are eigenvalues of B

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

- DCSBM
- Algorithm
- Performance
- A unified framework

Conclusion

$$\det(B - rI_{|\mathcal{E}_{\mathrm{d}}|}) \propto \det(H_r)$$

The ζ_p 's are eigenvalues of B

Introduction Graph clustering Community detection Objectives			
Physics inspired methods Bethe-Hessian Non-backtracking Challenges			
Main contribution Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework			

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

- Algorithm
- Performance
- A unified framework

Conclusion

• The largest p for which ζ_p is defined is k (Estimate of k)

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

- Algorithm
- Performance
- A unified framework

Conclusion

• The largest p for which ζ_p is defined is k (Estimate of k)

•
$$\zeta_{\rho} = rac{
ho(B)}{\lambda_{
ho}^{\downarrow|\cdot|}(B)} + o_n(1)$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

- Algorithm
- Performance
- A unified framework

The largest *p* for which ζ_p is defined is *k* (Estimate of *k*)
ζ_p = ρ(B)/λ[↓]_p(B) + o_n(1)

- hard problems = Large ζ_p
 - = high temperature
- ζ_{ρ} :detection when $\alpha > \alpha_{\rm c}$

Properties of ζ_p

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

- The largest *p* for which ζ_p is defined is *k* (Estimate of *k*)
 ζ_p = ^{ρ(B)}/_{λ_p^{+|·|}(B)} + o_n(1)
 - hard problems = Large ζ_p
 high temperature
 - ζ_{p} :detection when $\alpha > \alpha_{c}$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

$$H_{\zeta_p} \boldsymbol{x}_p = [(\zeta_p^2 - 1)I_n + D - \zeta_p A] \boldsymbol{x}_p = 0$$

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

$H_{\zeta_p} \boldsymbol{x}_p = [(\zeta_p^2 - 1)I_n + D - \zeta_p A] \boldsymbol{x}_p = 0$

For k = 2 let $\sigma_i \in \{\pm 1\}$ be the label

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Conclusion

$$H_{\zeta_p}\boldsymbol{x}_p = [(\zeta_p^2 - 1)I_n + D - \zeta_p A]\boldsymbol{x}_p = 0$$

For k = 2 let $\sigma_i \in \{\pm 1\}$ be the label

The eigenvector $\mathbf{x}_2 \approx \boldsymbol{\sigma}$ for all D

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

Algorithm

Performance

A unified framework

Conclusion

$$H_{\zeta_p} \boldsymbol{x}_p = [(\zeta_p^2 - 1)I_n + D - \zeta_p A] \boldsymbol{x}_p = 0$$

For k=2 let $\sigma_i\in\{\pm1\}$ be the label

The eigenvector $\mathbf{x}_2 \approx \boldsymbol{\sigma}$ for all D

Valid also for k > 2

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian

DCSBM

- Algorithm Performance
- Performance
- A unified framework

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

Conclusion

CD with the optimal BH

Input: connected graph G, k

Introduction

- Graph clustering
- Community
- detection
- Objectives

```
Physics inspired methods
```

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

CD with the optimal BH

Input: connected graph G, k

For
$$p = 1 : k$$

 $\circ \zeta_p : \lambda_p^{\uparrow}(H_{\zeta_p}) = 0$

Introduction

- Graph clustering
- Community
- detection
- Objectives

```
Physics inspired methods
```

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance A unified framework

CD with the optimal BH

Input: connected graph G, k

For
$$p = 1 : k$$

 $\circ \zeta_p : \lambda_p^{\uparrow}(H_{\zeta_p}) = 0$
 $\circ X_{\bullet,p} \leftarrow \mathbf{x}_p : H_{\zeta_p}\mathbf{x}_p = 0$

Introduction

- Graph clustering
- Community
- detection
- Objectives

```
Physics inspired methods
```

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance A unified framework

CD with the optimal BH

Input: connected graph G, k

For
$$p = 1: k$$

$$\circ \zeta_{\rho} : \lambda_{\rho}^{\uparrow}(H_{\zeta_{\rho}}) = 0$$

$$\circ X_{\bullet,\rho} \leftarrow \mathbf{x}_{\rho} : H_{\zeta_{\rho}}\mathbf{x}_{\rho} = 0$$

• Clustering in k-dimensions

Return: $\boldsymbol{\ell} \in \{1, \ldots, k\}^n$, label assignment

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

CD with the optimal BH

Input: connected graph
$$\mathcal{G}$$
, $k \leftarrow \left| \{ i : \lambda_i(H_{\sqrt{\rho(B)}}) < 0 \} \right|$
For $p = 1 : k$
 $\circ \zeta_p : \lambda_p^{\uparrow}(H_{\zeta_p}) = 0$
 $\circ X_{\bullet,p} \leftarrow x_p : H_{\zeta_p} x_p = 0$

Clustering in k-dimensions

Return: $\boldsymbol{\ell} \in \{1, \dots, k\}^n$, label assignment

In

- Graph clustering
- Community
- detection
- Objectives

methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

Random projection

+

Clustering in k-dimensions

CD with the optimal BH

Return: $\ell \in \{1, \ldots, k\}^n$, label assignment

- Graph clustering
- Community
- detection
- Objectives

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

CD with the optimal BH

Input: connected graph
$$\mathcal{G}$$
, $k \leftarrow \left| \{ i : \lambda_i(H_{\sqrt{\rho(B)}}) < 0 \} \right|$
For $p = 1 : k$
 $\circ \quad \zeta_p : \lambda_p^{\uparrow}(H_{\zeta_p}) = 0$
 $\circ \quad X_{\bullet,p} \leftarrow \mathbf{x}_p : H_{\zeta_p}\mathbf{x}_p = 0$
Random projection
+
polynomial approximation

• Clustering in k-dimensions

Return: $\ell \in \{1, \ldots, k\}^n$, label assignment

0}

Introduction

- Graph clustering
- Community
- detection
- Objectives
- Physics inspired methods
- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance

A unified framework

$$\zeta_{p} \leftarrow r : \lambda_{p}^{\uparrow}(H_{r}) = 0$$
: grid search is **inefficient**

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance A unified framework

$$\zeta_{
ho} \leftarrow r \; : \; \lambda_{
ho}^{\uparrow}(H_r) = 0$$
: grid search is **inefficient**

ς

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance A unified framework

$$_{
ho} \leftarrow r \; : \; \lambda_{
ho}^{\uparrow}(H_r) = 0$$
: grid search is **unefficient**

ς

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM

Algorithm

Performance A unified framework

$$_{
ho} \leftarrow r \; : \; \lambda_{
ho}^{\uparrow}(H_r) = 0$$
: grid search is **unefficient**

DCSBM graphs

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm

Performance

A unified framework

Figure: Performance vs competing methods on DCSBM synthetic graphs. n = 50.000, c = 5.

Real graphs

Introduction

Graph clustering

Community

detection

Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm

Performance

A unified framework

Dataset	n	с	k	H_{ζ_p}	A	$H_{\sqrt{c\Phi}}$	В	L^{rw}	$L_{ au}^{ m sym}$
Karate	34	4.6	2	0.37	0.37	0.37	0.37	0.36	0.37
Dolphins	62	5	2	0.38	0.21	0.34	0.22	0.38	0.38
Polbooks	105	8.4	<u>3</u>	0.50	0.47	0.50	0.45	0.50	0.50
Football	115	10.7	<u>12</u>	0.60	0.60	0.60	0.60	0.60	0.60
Mail	1133	9.6	21	0.52	0.32	0.40	0.37	0.48	0.52
Polblogs	1222	27,4	2	0.43	0.25	0.27	0.23	0.00	0.43
Τv	3892	8.9	41	0.85	0.60	0.56	0.55	0.55	0.80
Facebook	4039	43.7	55	0.76	0.42	0.49	0.48	0.70	0.58
GrQc	4158	6.5	29	0.80	0.52	0.51	0.51	0.34	0.80
Power grid	4941	2.7	25	0.92	0.18	0.33	0.31	0.92	0.85
Politicians	5908	14.1	62	0.82	0.48	0.54	0.51	0.74	0.74
GNutella P2P	6299	6.6	4	0.40	0.20	0.14	0.14	0.00	0.35
Wikipedia	7066	28.3	22	0.27	0.14	0.18	0.16	0.34	0.27
HepPh	11204	21.0	60	0.57	0.46	0.42	0.42	0.27	0.52
Vip	11565	11.6	53	0.62	0.28	0.32	0.32	0.16	0.54

Table: Modularity (no ground truth) comparison on real networks

Introduction

- Graph clustering
- Community
- detection
- Objectives
- Physics inspired methods
- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

Conclusion

 \bullet Ising Hamiltonian \rightarrow Bethe approximation \rightarrow Hessian \rightarrow H_r

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

- Ising Hamiltonian \rightarrow Bethe approximation \rightarrow Hessian \rightarrow H_r
- Ising Hamiltonian ightarrow naïve mean field approximation ightarrow Hessian ightarrow A

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

- Ising Hamiltonian \rightarrow Bethe approximation \rightarrow Hessian \rightarrow H_r
- Ising Hamiltonian ightarrow naïve mean field approximation ightarrow Hessian ightarrow A

Naïve mean field vs Bethe approximation

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

- Ising Hamiltonian \rightarrow Bethe approximation \rightarrow Hessian \rightarrow H_r
- Ising Hamiltonian ightarrow naïve mean field approximation ightarrow Hessian ightarrow A

Naïve mean field vs Bethe approximation

- Unsuited for sparse graphs
- Does not reach $\alpha_{\rm c}$ threshold on DCSBM graphs
- Does not keep heterogeneity into account

Optimal

Bethe-Hessian DCSBM Algorithm Performance

A unified framework

Conclusion

 $r = \zeta_{\rho}$ is the hardness-dependent optimal regularization

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}, \quad D_{\tau} = D + \tau I_n$$
A unified framework

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}, \quad D_{\tau} = D + \tau I_n$$

$$(D_{\zeta_p^2-1}-\zeta_p A)\mathbf{x}_p=0\Longrightarrow D_{\zeta_p^2-1}^{-1}A\mathbf{x}_p=rac{1}{\zeta_p}\mathbf{x}_p$$

A unified framework

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}, \quad D_{\tau} = D + \tau I_{n}$$

$$(D_{\zeta_p^2-1}-\zeta_p A)\mathbf{x}_p=0\Longrightarrow D_{\zeta_p^2-1}^{-1}A\mathbf{x}_p=\frac{1}{\zeta_p}\mathbf{x}_p$$

$$\begin{array}{c|cccc} D^{-1/2}AD^{-1/2} & L_{\zeta_{\rho}^2-1} & L_c & L_{\rho(B)-1} \\ \hline \\ \hline \\ Trivial & Optimal & Qin13 & Worst case \end{array}$$

 $au = \zeta_{
m p}^2 - 1$ is the hardness-dependent optimal regularization

CONCLUSION

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Two bridges

• Between "classical" and "physics-based" methods

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contributi

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Two bridges

- Between "classical" and "physics-based" methods
- Between "sparse" and "dense" regimes

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Two bridges

- Between "classical" and "physics-based" methods
- Between "sparse" and "dense" regimes

A simple paradigm

• The matrix adapts to the hardness

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Two bridges

- Between "classical" and "physics-based" methods
- Between "sparse" and "dense" regimes

A simple paradigm

- The matrix adapts to the hardness
- The optimal regularization is computed

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Two bridges

- Between "classical" and "physics-based" methods
- Between "sparse" and "dense" regimes

A simple paradigm

- The matrix adapts to the hardness
- The optimal regularization is computed

A question

How to find the "right temperature" for a given ML problem?

Extensions: CD in dynamical graphs

Introduction

- Graph clustering Community detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

• Consider a sequence of graphs $\{\mathcal{G}_t\}_{t=1,...,T}$

Extensions: CD in dynamical graphs

Introduction

- Graph clustering Community detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

- Consider a sequence of graphs $\{\mathcal{G}_t\}_{t=1,...,T}$
- Suppose the labels are correlated across time $\mathbb{P}(\ell_i^{(t)}=\ell_i^{(t+1)})=\eta$

Extensions: CD in dynamical graphs

Introduction

- Graph clustering Community detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

- Consider a sequence of graphs $\{\mathcal{G}_t\}_{t=1,...,T}$
- Suppose the labels are correlated across time $\mathbb{P}(\ell_i^{(t)} = \ell_i^{(t+1)}) = \eta$
- Infer the labels as a function of t, exploiting their time correlation $_4$

CD in dynamical graphs

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

- Bethe-Hessian
- Non-backtracking
- Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

A "dynamical" Hamiltonian

$$\mathcal{H}(\boldsymbol{s}) \;=\; -\sum_{t=1}^T \sum_{(i_t,j_t)\in\mathcal{V}_t} rac{\mathrm{ath}(\xi) s_{i_t} s_{j_t}}{\mathrm{Same}\;t} \;-\; \sum_{t=1}^{T-1} \sum_{i_t\in\mathcal{V}_t} rac{\mathrm{ath}(h) s_{i_t} s_{i_{t+1}}}{t \Longleftrightarrow t+1}$$

CD in dynamical graphs

7

Introduction

Graph clustering

- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance

A unified framework

A "dynamical" Hamiltonian

$$\mathcal{H}(oldsymbol{s}) \;=\; -\sum_{t=1}^T \sum_{\substack{(i_t,j_t)\in\mathcal{V}_t}} \frac{\operatorname{ath}(\xi) s_{i_t} s_{j_t}}{\operatorname{Same } t} \;- \sum_{t=1}^{T-1} \sum_{\substack{i_t\in\mathcal{V}_t}} \frac{\operatorname{ath}(h) s_{i_t} s_{i_{t+1}}}{t \Longleftrightarrow t+1}$$

... and a dynamical Bethe-Hessian for SC

Extensions: relating Nishimori to Bethe

Introduction

Graph clustering

Community

detection

Objectives

Physics inspired methods

Bethe-Hessian

Non-backtracking

Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Erdős-Rényi random graph \mathcal{G} , $orall ~(ij)\in \mathcal{E}$, $\omega_{ij}\sim P_0(|\omega_{ij}|)e^{eta_{ m N}\omega_{ij}}$

Extensions: relating Nishimori to Bethe

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Erdős-Rényi random graph
$$\mathcal{G}$$
, $orall ~(ij)\in \mathcal{E}$, $\omega_{ij}\sim P_0(|\omega_{ij}|)e^{eta_{\mathbf{N}}\omega_{ij}}$

$$egin{aligned} \hat{eta}_{\mathrm{N}} &= \max_{eta} \{eta ~:~ \lambda_1^{\uparrow}(m{H}_{eta}) = 0\} \ \hat{eta}_{\mathrm{N}} &= m{eta}_{\mathrm{N}} + o_n(1) \end{aligned}$$

Extensions: relating Nishimori to Bethe

Introduction

- Graph clustering Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Erdős-Rényi random graph
$$\mathcal{G},\,orall\,(ij)\in\mathcal{E},\,\omega_{ij}\sim P_0(|\omega_{ij}|)e^{eta_{
m N}\omega_{ij}}$$

$$egin{aligned} \hat{eta}_{\mathrm{N}} &= \max_{eta} \{eta ~:~ \lambda_1^{\uparrow}(m{H}_{eta}) = 0 \} \ \hat{eta}_{\mathrm{N}} &= m{eta}_{\mathrm{N}} + o_n(1) \end{aligned}$$

Cost-efficient data clustering

Publications

Introduction

- Graph clustering
- Community
- detection
- Objectives

Physics inspired methods

Bethe-Hessian Non-backtracking Challenges

Main contribution

Optimal Bethe-Hessian DCSBM Algorithm Performance A unified framework

Conclusion

Journal papers

- LD, Romain Couillet Nicolas Tremblay: Nishimori meets Bethe: a spectral method for node classification in sparse weighted graphs, in Journal of statistichal mechanics
- LD, Romain Couillet, Nicolas Tremblay: A unified framework for spectral clustering in sparse graphs, in JMLR

Conference papers

- LD, Romain Couillet Nicolas Tremblay: Community detection in sparse time-evolving graphs with a dynamical Bethe-Hessian, in NeurIPS 2020
- LD, Romain Couillet, Nicolas Tremblay: Optimal Laplacian regularization for sparse spectral community detection, in ICASSP 2020
- LD, Romain Couillet, Nicolas Tremblay: Classification spectrale par la laplacienne d
 éformée dans des graphes r
 éalistes, in GRETSI 2019
- LD, Romain Couillet, Nicolas Tremblay: Revisiting the Bethe-Hessian: improved community detection in sparse heterogeneous graphs, in NeurIPS 2019
- LD, Romain Couillet: Community Detection in Sparse Realistic Graphs: Improving the Bethe Hessian, in ICASSP 2019